中國文化大學 100 學年度轉學招生考試

系組:物理學系三年級 日期節次:7月26日第2節11:00-12:20

科目:力學 (11-75)

1. A particle of mass m moves in the x-y plane so that its position vector is $\vec{r} = r\cos(\omega t)\hat{i} + r\sin(\omega t)\hat{j}$, where r and ω are constants. Find the velocity and the acceleration. (15%)

- 2. The position of a particle is given by $\bar{r} = A(e^{\alpha i}\hat{i} + e^{-\alpha i}\hat{j})$, where α is a constant. Find the velocity and the acceleration. (15%)
- 3. A particle of mass m moves in the x-y plane so that its position vector is $\vec{r} = a\cos(\omega t)\hat{i} + b\sin(\omega t)\hat{j}$, where a, b and ω are constants and a > b. (a) Show that the particle moves in an ellipse. (b) Show that the force acting on the particle is conservative. (20%)
- 4. Show by means of the substitution $r=\frac{1}{u}$ that the differential equation $m(\ddot{r}-r\dot{\theta}^2)=f(r)$ for the path of the particle in a central field can be written as

$$\frac{d^2 u}{d\theta^2} + u = -\frac{1}{ml^2 u^2} f(\frac{1}{u}) \circ (20\%)$$

Fig.-1

5. As shown in Figure-1, use the (x,y) coordinate system to find (a) the kinetic energy T, the potential energy U, and the Lagrangian L for the case of a simple pendulum (with length ℓ , mass m) which is moving in a uniform gravitational field. Using Lagrangian formalism to find the equation of motion (b) in the (x,y) coordinate and (c) in the polar coordinate (r,θ) (30%)

第/頁共/頁