文化大學機構典藏 CCUR:Item 987654321/53354
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46867/50733 (92%)
Visitors : 11877943      Online Users : 571
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/53354


    Title: 應用AR及AIoT資通訊技術於水產養殖場域管控
    Apply AR and AIoT technology to aquaculture field management
    Authors: 陳仁偉
    Contributors: 中國文化大學資訊管理學系(所)
    Keywords: AI影像辨識
    虛擬實境
    水產養殖管理
    人工智慧物聯網
    擴增實境
    AI Image recognition
    VR
    aquaculture Mnagement
    AIoT
    AR
    Date: 2023
    Issue Date: 2024-05-31 15:35:22 (UTC+8)
    Abstract: 應用人工智慧(AI)、物聯網(IoT)及擴增實境(AR)等資通訊技術,規劃開發現場作業指引與稽核、遠距視訊技術指導與顧問服務、即時影像辨識、環境參數大數據分析、及建立示範場域等,期能有效提升民間水產養殖場域的管控效率,並促使產業轉型,提升生產力與競爭力。112年工作目標包含:一、利用IoT環境感測、AR視覺輔具等設備,達到經驗傳承、現場作業指引稽核、即時遠距視訊技術指導等效果。二、藉由養殖管理系統結合視覺輔具影像與水質與微氣象感測等資訊,導入雲端大數據分析平台並建構AI數值模型進行分析,提供提前告警功能,並透過持續追蹤與分析來最佳化現場養殖管理。三、運用AI數值與生物影像模型辨識技術來提升民間水產養殖場域的管控效率,並促使產業轉型,提升生產力與競爭力。四、應用智慧養殖感控技術設計開發低成本環境IoT感測或周邊裝置於現場監測管理,達到省工節能之效益。

    This plan integrates artificial intelligence (AI), Internet of Things (IoT), augmented reality (AR) and other information and communication technologies, implements the planning and formulation of on-site operation guidelines and audits, remote video technical guidance and consulting services, real-time images Identification, big data analysis of environmental parameters, and construction of demonstration farms are expected to effectively improve the management and control efficiency of private aquaculture farms, promote industrial transformation, and enhance productivity and competitiveness. The 112-year work goals include:一、Use IoT environmental sensing, AR visual aids, and other equipment to achieve the effects of experience inheritance, on-site operation guidance and audit, and real-time remote video technology guidance.二、Through the aquaculture management system combined with visual aids images, water quality, and micro-meteorological sensing information, import cloud big data analysis platform and construct AI numerical model for analysis, provide early warning function, and optimize the site through continuous tracking and analysis Breeding management.三、Use AI numerical and biological image model identification technology to improve the management and control efficiency of private aquaculture fields, promote industrial transformation and enhance productivity and competitiveness.四、Apply smart breeding sensing control technology to design and develop low-cost environmental IoT sensing or peripheral devices for on-site monitoring and management to achieve labor-saving and energy-saving benefits.
    Appears in Collections:[Department of Information Management & Graduate Institute of Information Management] project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML40View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback