摘要: | 超臨界對高分子進行發泡方式可以進行微孔發泡且較容易控制泡孔的孔徑大小及密度,且其二氧化碳具有容易取得、廉價且無毒性等優點,且它的相容性比起其他化學發泡劑來得優越以及使用超臨界二氧化碳枝發炮方式不會汙染環境亦不會造成人體上的傷害,所以近幾年來超臨界發泡是一種使用最廣泛的綠色技術之一。
本篇論文研究針對5種來自李長榮化工的聚丙烯,型號分別為 PC366-5、PC366-3、PT100、PT231、HP600S,藉由改變發 泡條件來探討發泡形貌、泡孔孔徑、以及密度。在實驗開始之初,設定溫度140°C、壓力3500psi,經過超臨界二氧化碳(scCO2)飽和120min,聚丙烯(PP)發泡粒經過SEM拍攝時,沒有太多泡孔產生,而將溫度調至150°C、壓力3500psi下飽和120min,SEM拍攝可以明顯看出顆粒內部有泡孔產生,因此實驗樣品操作條件設計如下:發泡溫度使用兩種溫度水準,依序為150°C、155°C,發泡壓力為3500psi、4000psi及4500psi,飽和時間皆為120分鐘,洩壓速度分為快速、慢速,快速洩壓為將洩壓針閥直接打開洩光所有二氧化碳至常壓狀態;而慢速為緩緩地打開洩壓針閥,使洩壓速度維持在一定得洩壓速率,10分鐘將壓力洩至0。將利用超臨界二氧化碳發泡的實驗樣品使用掃描式電子顯微鏡(SEM)進行對剪切面拍攝發泡後之形貌,並利用電腦軟體(IPWIN60)分析泡孔直徑大小,並計算出泡孔平均孔徑大小,泡孔密度則是將SEM所拍攝之區域,圈出區域內全部的泡孔數並做計算。
經過上述的實驗以及數據計算後,我們的研究結果顯示了一些重要的趨勢。當發泡溫度上升時,泡孔平均孔徑大小呈現增加的趨勢,但泡孔密度則呈現反比下降的現象。同樣地,當發泡壓力上升時,泡孔平均孔徑大小也隨之增大,但泡孔密度卻顯示反比下降。此外,洩壓時間的快慢也對泡孔的尺寸產生影響,慢速洩壓時,二氧化碳有足夠的時間結合形成較大尺寸的泡孔,因此泡孔密度也隨之下降。在快速洩壓的情況下,我們觀察到在150°C、3500psi條件下可以獲得較小的泡孔孔徑,而在155°C、4500psi條件下則可以獲得較大的泡孔孔徑。相對地,在慢速洩壓的情況下,150°C、3500psi條件下的泡孔孔徑較小,而150°C、4500psi條件下的泡孔孔徑較大。另外,我們觀察到對於相同型號的不同產品,熔融流率(MF)越大,泡孔孔徑也會變得較大。
This study explores the use of supercritical CO2 for polymer foaming, enabling microcellular foaming with better control over pore size and density. CO2 offers advantages such as accessibility, cost-effectiveness, and non-toxicity, making it superior to other chemical foaming agents. The method is environmentally friendly and poses no harm to human health, making supercritical foaming a widely adopted green technology.
The thesis investigates five polypropylenes (PC366-5, PC366-3, PT100, PT231, and HP600S) from Formosa Plastics Corporation. Foaming conditions were varied to study foam morphology, pore size, and density. Initial experiments at 140°C and 3500 psi showed limited pore formation, but evident pores were observed at 150°C under the same pressure and saturation time. Experimental conditions were set with foaming temperatures at 150°C and 155°C, foaming pressures at 3500 psi, 4000 psi, and 4500 psi, saturation time of 120 minutes, and two depressurization rates: fast and slow.
Scanning Electron Microscopy (SEM) captured cross-sectional images, and Image Analysis Software (IPWIN60) determined pore diameter, average pore size, and pore density. Results indicate that increasing foaming temperature and pressure leads to larger average pore size but lower pore density. Slow depressurization allows for larger pores and decreases pore density, while fast depressurization results in smaller pore sizes at 150°C and 3500 psi, and larger pore sizes at 155°C and 4500 psi. Higher melt flow rate (MF) corresponds to larger pore sizes for products of the same model. |