文化大學機構典藏 CCUR:Item 987654321/51801
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46833/50693 (92%)
Visitors : 11849089      Online Users : 475
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/51801


    Title: Development of Lightweight RBF-DRNN and Automated Framework for CNC Tool-Wear Prediction
    Authors: Chiu, Sheng-Min
    Chen, Yi-Chung
    Kuo, Cheng-Ju
    Hung, Li-Chun
    Hung, Min-Hsiung
    Chen, Chao-Chun
    Lee, Chiang
    Contributors: 資訊工程學系
    Keywords: Deep-learning model (DLM)
    framework
    lightweight model
    radial basis function (RBF)
    tool-wear prediction (TWPred)
    Date: 2022
    Issue Date: 2023-03-23 12:42:50 (UTC+8)
    Relation: IEEE Transactions on Instrumentation and Measurement卷 71 2022 論文號碼 2506711
    Appears in Collections:[Department of Computer Science and Information Engineering] journal articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML208View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback