全球暖化時,溫度升高的幅度有明顯的區域差異。此加熱差異除了影響南北溫度梯度,亦影響垂直大氣穩定度,進而改變大氣能量之轉換及傳送。大氣穩定度的變化,以往在中高緯度地區因水氣含量少,計算其能量傳送時,經常假設為無水氣的狀態,但是暖化後的中緯度可能會因為水氣量提高,使得採用靜穩定度計算時可能出現較大的偏差。本研究使用ERA5及TaiESM1歷史模擬及暖化模擬探討考慮水氣後,平均可用位能、擾動可用位能及能量轉換項的變化。 水氣的影響可透過有效靜穩定度來呈現,初步結果顯示考慮水氣後,相關的能量項數值約變為1.5倍,顯示水氣的影響極大,但是暖化後此影響倍率並沒有改變。因此未來可以簡單的以此倍率修正水氣的影響,暖化後亦不需更改倍率。此研究中尚未討論到水氣對動能的影響,動能的計算單純使用風速,無法簡單的使用有效靜穩定度來計算,這部分將於未來有機會時繼續深入研究。
The tropospheric warming pattern has regional differences after global warming. The warming difference may change the meridional temperature gradient and atmospheric stability, which then influence atmospheric energy conversion and transport. The computation of atmospheric stability used to assume the dry atmosphere in the mid- to high- latitudes. However, the atmospheric moisture is increasing with global warming, and may influence the atmospheric stability significantly. Therefore, this research uses ERA5 and TaiESM1 historical and SSP5-8.5 simulations to investigate the influence of water vapor on the zonal mean available potential energy, eddy available potential energy, and their energy conversion term. We calculate the effective static stability to represent the influence of water vapor on stability. Our preliminary results show that the potential energy and energy conversion become 1.5 times larger in the moist atmosphere than in the dry atmosphere. However, the ratio does not enlarge after warming. We can easily rescale the values to represent the contribution of water vapor. We did not discuss the influence of moisture for kinetic energy, which can be the future topic.