English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11878191      線上人數 : 586
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51317


    題名: 應用人工智慧技術建構新聞發佈後之市場反應偵測模式—以國泰金控為例
    Applying Artificial Intelligence Technique to Construct the Detection Model of Market Reaction in News Announced: An Empirical Study of Cathay Financial Holdings
    作者: 郭于楨
    貢獻者: 財務金融學類
    關鍵詞: 文字探勘
    Jieba
    TF-IDF
    支援向量機
    市場反應
    Text Mining
    Jieba
    TF-IDF
    Support Vector Machine
    Market Reaction
    日期: 2022
    上傳時間: 2023-03-03 15:19:59 (UTC+8)
    摘要: 由於資訊科技及網際網路發展普及化,促使新聞媒體在報導時更加即時與多元,但各家媒體在發佈新聞後對文字內容的真實性及參考性的標準存在不確定性,且會透過不同詞彙來影響投資人的投資決策,故當投資人接收到網路新聞時,容易受到媒體新聞的文字內容而產生資訊不對稱(information asymmetry)之問題,進而衍生投資逆選擇(adverse selection)風險。
    本研究在基於人工智慧(artificial intelligence, AI)及大數據(big data)的概念下,建構一輔助投資人在接收媒體新聞發佈後之投資決策評估模型。研究樣本為中時新聞網發佈之有關「國泰金(2882)」的文本資料,利用臺灣證券交易所的歷史股價資料對新聞文字作類別標記;接著,透過結巴(Jieba)分詞技術來對新聞文字進行分詞,並依據加權技術TF-IDF來獲得新聞文字各詞彙的權重以構建出「關鍵詞彙-文字矩陣」,再藉由歷史收盤價來建立模型;最後,應用機器學習的支援向量機(Support Vector Machine, SVM)進行分析及預測。結果顯示本研究分析得出之關鍵詞,整體而言對於市場反應不具影響力,顯示投資人對新聞報導和媒體的的信任程度低。

    Because of the popularity of information technology and internet development, the news media in the report more immediate and pluralistic, but after the release of news on the authenticity of text content and reference standards are uncertain, and through different words to influence investors' investment decisions, so when investors receive network news, easy to receive the text content of media news and produce information asymmetry problems, and thus derive investment adverse selection risk. Therefore, based on the concepts of artificial intelligence (AI) and big data, this study constructs an investment decision evaluation model for an auxiliary investor after receiving media news release. The research sample used the keywords " Cathay Holdings (2882)" published by China Times as an example, using the historical stock price data of the Taiwan Stock Exchange to categorize news text, and then to break news text through Jieba word breaker technology. Based on the weighted technology TF-IDF to obtain the weight of each word of news text to build a "key vocabulary-text matrix", and then by Cathay Holdings historical closing price to establish the market reaction after the news release. Finally, apply the Support Vector Machine (SVM) model of machine learning to analyze and predict. The results show that the keywords analyzed in this study have no influence on the market reaction as a whole.
    顯示於類別:[財務金融學系 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML188檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋