文化大學機構典藏 CCUR:Item 987654321/51288
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46867/50733 (92%)
造访人次 : 11882331      在线人数 : 1009
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51288


    题名: 利用人工智慧技術預測企業財務危機
    Predicting Financial Distress Using Artificial Intelligence Techniques
    作者: 高煜軒
    贡献者: 會計學系
    关键词: 深度學習
    財務危機預測
    決策樹
    隨機森林
    長短期記憶模型
    卷積神經 網路
    deep learning
    Predicting Financial Distress
    Decision Tree
    Random Forest
    long short-term memory model
    convolutional neural network
    日期: 2022
    上传时间: 2023-03-03 09:43:40 (UTC+8)
    摘要: 金融市場陸續開放與自由化使資本市場發展迅速,導致財務危機的發生更是層出不窮,如果能提前預測財務危機的發生,更能當下找出應對之策,找出失敗的根源避免危機的產生。本研究以台灣經濟新報(Taiwan Economic Journal, TEJ)收集2000 年至2021 年台灣上市櫃發生財務危機之公司為主要研究對象,以二階段來建構模型,第一階段使用隨機森林(Random Forest)與決策樹C5.0(Decision Tree C5.0)來進行重要變數的篩選,再以卷積神經網路(convolutional neural network)和長短期記憶模型(long short-term memory model)來建立有效的財務危機預測模型,並對學術研究及實務界提出有效建議。

    The successive opening and liberalization of the financial market has led to the rapid development of the capital market, which has led to the occurrence of financial crises. The research data comes from Taiwan Economic Journal (TEJ), the sampling period is from 2000 to 2021. This study uses a two-stage way to construct the model. First, the decision tree C5.0 and random forest are used to screen out important variables, and then the convolutional neural network (CNN) and long short-term memory (LSTM) model are used to construct an effective financial crisis prediction model. This study will make effective suggestions for academic research and practice.
    显示于类别:[會計學系暨研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML123检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈