English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11856136      線上人數 : 424
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/51201


    題名: 利用深度學習建立財務報表舞弊偵測模型
    Financial Statement Fraud Detection Models Using Deep Learning
    作者: 邱冠勳
    貢獻者: 會計學系
    關鍵詞: 深度學習
    財務報表舞弊
    類神經網路
    長短期記憶模型
    卷積神經網路
    deep learning
    financial statement fraud
    artificial neural network
    long short-term memory model
    convolutional neural network
    日期: 2021
    上傳時間: 2023-02-25 12:53:17 (UTC+8)
    摘要: 財務報表舞弊欺騙了財務報表的使用者,也會造成投資人重大 的損失,及時且有效的偵測財務報表舞弊是相當重要的。本研究以 2000 年至2019 發生財務報表舞弊之上市櫃公司為主要研究對象,先 使用隨機森林(random forest)來進行重要變數的篩選,再以類神經網 路(artificial neural network)、長短期記憶模型(long short-term memory model)與卷積神經網路(convolutional neural network)分別來建立偵測 模型。實證結果顯示,由隨機森林篩選重要變數加上卷積神經網路所 建立之模型(RF-CNN)有最佳的偵測能力,其整體準確率達95.66%; F1 分數達91.67%;接收者操作特徵曲線之曲線下面積達99.75%。
    Fraud in financial statements deceives the users of financial statements and can also cause great losses to investors. It is very important to detect fraud in financial statements timely and effectively. This study focuses on Taiwan listed companies with fraudulent financial statements from 2000 to 2019 as the research object. First, the random forest is used to screen important variables, and then the artificial neural network, long short-term memory model and convolutional neural network are used to establish the detection models separately. The empirical results show that the RF-CNN model has the best detection ability, with an overall accuracy rate of 95.66%; F1 score of 91.67%; area under the receiver operating characteristic curve of 99.75%.
    顯示於類別:[會計學系暨研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML120檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋