English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11866624      線上人數 : 550
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/50398


    題名: Automated text mining process for corporate risk analysis and management
    作者: Zeng, Jhih-Hong
    Chang, Chinghob
    Hsu, Ming-Fu
    貢獻者: Department of Economics
    關鍵詞: Annual reports;Automated text mining process;Multiple attribute decision-making;Risk management
    日期: 2022-08
    上傳時間: 2022-10-24 09:07:10 (UTC+8)
    出版者: Palgrave Macmillan
    摘要: The aim of this research is to introduce innovative automated text mining process to extract operation risks from accounting narratives and to further examine the association between these risk types and operating performance. Specifically, we perform topic modeling to decompose a large amount of unstructured textual disclosures into some topics and preserve these topics, which are relevant to business operation risk. Sequentially, we propose a measure for the degree of financial default, referred to as the “intensity of risk-word list,” by joint utilization of text mining and a statistical approach. The analyzed results are then fed into a support vector machine-based model to construct the forecasting model. The results show that the textual-based risk indicators are significantly and positively related to a corporate’s operation efficiency. This study also echoes the recent trend of financial reporting regulations to add a new section on risk factors in annual reports.
    關聯: Risk Management
    Risk Management卷 24, 期 4, 頁 386 - 419December 2022
    顯示於類別:[經濟學系暨經濟學系碩博士班] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML146檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋