English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11845483      線上人數 : 703
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48859


    題名: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning
    作者: Lai, YH (Lai, Yu-Heng)
    Chen, WN (Chen, Wei-Ning)
    Hsu, TC (Hsu, Te-Cheng)
    Lin, C (Lin, Che)
    Tsao, Y (Tsao, Yu)
    Wu, SM (Wu, Semon)
    貢獻者: 化學系
    關鍵詞: EXPRESSION
    ADENOCARCINOMA
    PROGNOSIS
    CHEMOTHERAPY
    ONCOGENES
    PROTEINS
    GENE
    HUR
    日期: 2020-12-01
    上傳時間: 2020-12-10 13:43:25 (UTC+8)
    摘要: Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate prognostic stratification of NSCLC can become an important clinical reference when designing therapeutic strategies for cancer patients. With this clinical application in mind, we developed a deep neural network (DNN) combining heterogeneous data sources of gene expression and clinical data to accurately predict the overall survival of NSCLC patients. Based on microarray data from a cohort set (614 patients), seven well-known NSCLC biomarkers were used to group patients into biomarker- and biomarker+ subgroups. Then, by using a systems biology approach, prognosis relevance values (PRV) were then calculated to select eight additional novel prognostic gene biomarkers. Finally, the combined 15 biomarkers along with clinical data were then used to develop an integrative DNN via bimodal learning to predict the 5-year survival status of NSCLC patients with tremendously high accuracy (AUC: 0.8163, accuracy: 75.44%). Using the capability of deep learning, we believe that our prediction can be a promising index that helps oncologists and physicians develop personalized therapy and build the foundation of precision medicine in the future.
    關聯: SCIENTIFIC REPORTS 卷冊: 10 期: 1 文獻號碼: 4679
    顯示於類別:[化學系所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML152檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋