文化大學機構典藏 CCUR:Item 987654321/48776
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46833/50693 (92%)
造访人次 : 11849838      在线人数 : 612
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/48776


    题名: Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
    作者: Ye, ZR (Ye, Zong-Rong)
    Huang, IS (Huang, I-Shou)
    Chan, YT (Chan, Yu-Te)
    Li, ZJ (Li, Zhong-Ji)
    Liao, CC (Liao, Chen-Cheng)
    Tsai, HR (Tsai, Hao-Rong)
    Hsieh, MC (Hsieh, Meng-Chi)
    Chang, CC (Chang, Chun-Chih)
    Tsai, MK (Tsai, Ming-Kang)
    贡献者: 化材系
    关键词: MODEL
    日期: 2020-06-23
    上传时间: 2020-11-03 15:31:42 (UTC+8)
    摘要: Organic fluorescent molecules play critical roles in fluorescence inspection, biological probes, and labeling indicators. More than ten thousand organic fluorescent molecules were imported in this study, followed by a machine learning based approach for extracting the intrinsic structural characteristics that were found to correlate with the fluorescence emission. A systematic informatics procedure was introduced, starting from descriptor cleaning, descriptor space reduction, and statistical-meaningful regression to build a broad and valid model for estimating the fluorescence emission wavelength. The least absolute shrinkage and selection operator (Lasso) regression coupling with the random forest model was finally reported as the numerical predictor as well as being fulfilled with the statistical criteria. Such an informatics model appeared to bring comparable predictive ability, being complementary to the conventional time-dependent density functional theory method in emission wavelength prediction, however, with a fractional computational expense.
    關聯: RSC ADVANCES 卷冊: 10 期: 40 頁數: 23834-23841
    显示于类别:[化學工程與材料工程學系暨碩士班] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML144检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈