English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11850854      線上人數 : 409
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/44632


    題名: The roles of vertical wind shear and topography in formation of convective asymmetries in Typhoon Nanmadol (2011)
    作者: Chou, KH (Chou, Kun-Hsuan)
    Yeh, CM (Yeh, Chun-Ming)
    Lin, SJ (Lin, Shu-Jeng)
    貢獻者: 大氣系
    關鍵詞: TROPICAL CYCLONE INTENSITY
    BOUNDARY-LAYER
    IDEALIZED SIMULATIONS
    PART I
    EYEWALL EVOLUTION
    TAIWAN OROGRAPHY
    TRACK
    MODEL
    IMPACT
    MOTION
    日期: 2019-04
    上傳時間: 2019-06-25 11:36:10 (UTC+8)
    摘要: he effects of terrain and environmental vertical wind shear on the intensity, structure, and asymmetric convection of Typhoon Nanmadol (2011) were investigated using a high-resolution numerical model. Terrain-removed sensitivity experiments were conducted to elucidate the relative role of terrain in the formation of the storm's asymmetric convection. Several sensitivity experiments were also employed to examine whether convective asymmetry formed in the simulated storm was influenced by model physics or existence of Typhoon Talas (2011). The control experiment shows that the simulations of the overall track and intensity evolution and asymmetric convection of Nanmadol were reasonably close to observations. Storm-relative composited analyses prove that environmental vertical wind shear enhances the storm's secondary circulation (low-level inflow, upward motion, and upper-level outflow) over the downshear side, but suppresses secondary circulation over the upshear side, thus inducing asymmetric secondary circulation within the storm, the dynamical pattern of which can be explained by the superposition effect of environmental vertical wind shear. The results of sensitivity experiments indicate that the underlying terrain, the model physics, and the circulation of the Talas didn't exert any obvious influence on the asymmetric convection and secondary circulation of the simulated storm. Therefore, the results presented here not only indicate that environmental vertical wind shear played a dominant role in forming the asymmetric convective pattern of Nanmadol, but also demonstrate that the proposed shear-induced dynamic pattern of the asymmetric secondary circulation is robust.
    關聯: Terr. Atmos. Ocean. Sci., Vol. 30, No. 2, 185-214, April 2019
    顯示於類別:[大氣系所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML165檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋