文化大學機構典藏 CCUR:Item 987654321/41830
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46833/50693 (92%)
造访人次 : 11847163      在线人数 : 388
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/41830


    题名: Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish
    作者: Sarasamma, S (Sarasamma, Sreeja)
    Audira, G (Audira, Gilbert)
    Juniardi, S (Juniardi, Stevhen)
    Sampurna, BP (Sampurna, Bonifasius Putera)
    Liang, ST (Liang, Sung-Tzu)
    Hao, E (Hao, Erwei)
    Lai, YH (Lai, Yu-Heng)
    Hsiao, CD (Hsiao, Chung-Der)
    贡献者: 化學系所
    关键词: OXIDATIVE STRESS HYPOTHESIS
    ALZHEIMERS-DISEASE
    ZNO NANOPARTICLES
    LOCOMOTOR-ACTIVITY
    BEHAVIOR
    GENOTOXICITY
    COPPER
    ORYZIAS-LATIPES
    TOXICITY
    DANIO-RERIO
    日期: 2018-10
    上传时间: 2019-01-16 14:24:48 (UTC+8)
    摘要: In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer's Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid ) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.
    显示于类别:[化學系所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML173检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈