本研究的目的在探討速度-時間非線性模式(V-T)、速度-時間倒數線性模式(V-1/t)、距離-時間線性模式(D-T)和三參數非線性模式(3P)所得之無氧跑步能力(anaerobic running capacity; ARC)的差異及其與運動表現的相關。受試對象為20名優秀長跑選手,所有受試者皆需接受400m、800m、1500m、3000m、5000m和10000m最大跑步測驗,再以此成績利用SAS統計軟體計算各種數學模式之ARC。研究結果發現各數學模式之ARC,經由變異數分析後,皆達顯著差異水準。但是,以3P非線性模式之ARC最大,也最接近無氧運動能力1-2分鐘的範圍。各數學模式之ARC與400m和800m平均速度的相關,達顯著水準(r = .417-.585)。顯示各數學模式之ARC皆能代表長跑選手之無氧運動能力。另外,3P非線性模式所得之Vmax與400m、800m和1500m平均速度之相關也達顯著水準,且距離愈短相關愈高,顯示Vmax也是評估無氧運動能力的有效指標,因此,3P數學模式為判定無氧運動能力最佳方法。
The purposes of this study are to examine the difference between anaerobic running capacity (ARC) derived from various mathematical models (V-T nonlinear model, V-1/t linear model, D-T linear model and 3P nonlinear model). Subjects are 20 distance runners. Each subject ran six different distances (400m, 800m, 1500m, 3000m, 5000m and 10000m) at their maximal effort and the time to complete each distance was recorded for assessing ARC by various mathematical models. The results were: (1)ARC of various mathematical models and the average velocity of the maximal effort of 400m and 800m running were significantly correlated (r = .417-.585). (2)3P nonlinear model produced an estimate of ARC that was the highest, and the maximal instantaneous velocity (Vmax) and the average velocity of the maximal effort of 400m、800m and 1500m running were significantly correlated. It is suggested that 3P nonlinear model is the best choice for ARC estimation for distance runners.