English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11845698      線上人數 : 858
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/40413


    題名: 以深度學習人臉辦識應用於非接觸式心率偵測之研究
    Research of Face Recognition using Deep Learning for Non- Contact Heartbeat Detection
    作者: 李佳睿
    貢獻者: 資訊工程學系
    關鍵詞: YOLOv2
    深度學習
    人臉定位
    心律偵測
    YOLOv2
    deep learning
    face positioning
    heartrate detection
    日期: 2018
    上傳時間: 2018-07-31 14:10:35 (UTC+8)
    摘要: 我們提出一個應用深度學習架構學習人臉辨識並進行即時心跳量測的方法。本方法實驗結果可以得知,OpenCV自帶人臉辨識與YOLOv2實作出來之即時心率測量之差異,可以比較出OpenCV自帶人臉辨識速度及辨識率不佳,使用YOLOv2來作人臉辨識後,能明顯提升運行效果與準確度,因為YOLOv2不同OpenCV自帶人臉辨識的方法,OpenCV自帶人臉重複搜尋整張圖的相關特徵點,而YOLOv2只對整張圖有興趣的特徵點進行人臉搜索,由此我們可以因為加快的運行速度,而達到未來需要追加其他功時,能擁有更高的拓展可能性。
    We propose a method of applying deep learning architecture to learn face recognition and perform instant heartbeat measurement. The experimental results show that OpenCV comes with people. The difference between face recognition and real heart rate measurement made by YOLOv2 can compare the speed and recognition rate of OpenCV's own face recognition. After using YOLOv2 for face recognition, it can significantly improve the running effect and accuracy, because YOLOv2 Different OpenCV's own face recognition method, OpenCV comes with a face to repeatedly search for the relevant feature points of the whole picture, and YOLOv2 only performs face search on the feature points that are of interest to the whole picture, so we can run faster. Speed, and when you need to add other work in the future, you can have a higher expansion potential.
    顯示於類別:[資訊工程學系] 專書

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML275檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋