本計劃將針對本次徵求課題之B-06,透過政府之開放資料與企業合作發展在防災應用的工具與全新的防災產業應用模式。 梅雨鋒面所帶來的劇烈降雨事件,一直是台灣重要的天然災害之一。這樣的系統本身具備了跨尺度的特性,也導致在傳統定量降雨預報上有非常大的不確定與限制。本研究將使用全新的降雨預報概念,將過去針對台灣極端降雨與長期天氣系統分析的經驗,結合目前最新的人工智慧(AI)分析工具-機器學習模組,發展特定天氣型態之極端降雨事件預警系統。計畫中將使用本團隊過去建立相對應之天氣系統主觀資料庫,發展客觀化天氣系統判讀模組,用以克服過去對於天氣診斷工具的諸多限制並延長可分析之資料時間。我們也將利用這些天氣系統的資訊與過去的極端降雨事件的相關性分析結果,以機器學習技術為核心,結合即時開源測站資料分析與大氣數值預報模式資料,建立適合大台北地區梅雨季劇烈降雨事件的人工智慧預警模式,並可將此模式落實於防災單位應用。 The Mei-Yu fronts related extreme rainfall event is one of the major nature disasters in Taiwan. This front system has complicate multiscale interactions and also cases some limitation and error of the Quantitative Precipitation Forecasts (QPFs). In this study, we will use a new approach of QPFs. We will base on the previous experience of weather events related extreme rainfall studies and use the Artificial Intelligence (AI) analysis methods to develop an objective weather classification method. We will also use those objective weather events data, real-time observations and atmospheric numerical forecasting model outputs to develop an artificial intelligence based forecasting model for the extreme rainfall events of the Greater Taipei area during the Mei-Yu season.