本篇文章係以模擬方式來分析人造衛星在動場與大氣阻力相互交替之擾動場下,對人造衛星軌道之預測,一般爲了精確的預測人造衛星之軌跡以及重返大氣落地之位置在扭曲衛星之軌道上,往往力求大氣模式之精確與動場模式要求之階段過高梁達成,而本文中所提到的則以美國次太空梭所搜集之大策反動場收據加入衛星之模擬程式內,一方面研討二者分別對軌道變異造成之影響,一方面研討二著同時對軌道變異,所產生之結果分析。文中,所使用之長週期軌道擾動程式(POHOP)與高精度之軌道擾動程式(POHOP)相互來解決被動之軌道擾動問題,文中所用之大氣模式修改之MSIS90以及精密動場模式,對文中之模擬精度有模大之助益。文中所採之衛星場景,係以低軌衛星在近地點80到100km所作短週期/長週之模凝土具,經與實際飛行過之衛星數據相比,其精度已獲釋相當之肯與信賴。另外一個具體的結果是利用2×2之動場模式其對衛星之軌道精度並不遜色於用36×36之動場模式,因此節省大量之電腦還算對問,而獲得不差的結果,也是本文強調的另一個重點。
This paper presents how to model the gravity and atmospheric numerical models for simplifying the problem and decreasing the computing error in the orbit simulation process. The perigee aerobraking from 80 km to 100 km with and without a plane-change are included for comparing the results. The results show the complicated gravity (36 by 36) model can be simplied into 2 by 2 or J2 only under some special assumptions and several circumstances, with no resulting accuracy penalty. Using the simplified model into aerobraking trajectory for simulation, the results show the same good answer as the results of using full gravity model does. The Planetary Observer High Precision Orbit Propagator (POHOP) and the Planetary Observer Long-Term Orbit Propagator (POLOP) will be utilized for this task The atmosphere extremes are modified in POHOP's density model, so that below 90 km, the MSIS90 is adapted. A comparison is made using the POHOP simulation program to perform an aerobraking study in the perigee corridor range of 80 to 100 km.