English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11866685      線上人數 : 571
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/35916


    題名: An alternative model for the analysis of detecting electronic industries earnings management using stepwise regression, random forest, and decision tree
    作者: Chen, FH (Chen, Fu-Hsiang)
    Howard, H (Howard, Hu)
    貢獻者: 會計系
    關鍵詞: Earnings management
    Random forest
    Stepwise regression
    CHAID
    CART
    C5.0
    Decision tree
    日期: 2016-05
    上傳時間: 2017-04-14 10:59:28 (UTC+8)
    摘要: This study attempts to diagnose the detecting electronic industries' earnings management by integrating suitable soft computing methods. Accounting earnings information is a very crucial element for corporate stakeholders to determine their stock prices and evaluate their supervision and management authority's performance, while it is also essential information for measuring corporate value. Hence, whether an enterprise can faithfully express its true economic meaning over its financial statements and how the management handles its earnings have turned out to be a popular issue widely discussed by researchers. Detecting public companies' earnings management is an important and challenging issue that has served as the impetus in many academic studies over the last few decades. Data mining technique and machine learning methods have also been commonly applied by accounting and financial personnel to other fields of studies. The study used the stepwise regression and random forest techniques to screen the variables in the first place, followed by adopting three kinds of decision trees including Chi-squared automatic interaction detector, classification and regression trees and C5.0 to establish a model and find out if the tested enterprise had extreme earnings manipulation. The results show that the proposed hybrid approach (RF+C5.0) has the optimal classification rate (the accuracy rate is 91.24 %) and the lowest occurrence of Type I error and Type II error. Also, as discovered from the rules set of the final additional testing, an enterprise's operating cash flow, times interest earned ratio and previous period's discretionary accruals play a decisive role in affecting its extreme earnings management.
    關聯: SOFT COMPUTING 卷: 20 期: 5 頁碼: 1945-1960 特刊: SI
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML310檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋