English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11866971      線上人數 : 671
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/3548


    題名: Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation
    作者: Yuh-Chiang Shen
    Yea-Hwey Wang
    Yueh-Ching Chou
    Kuo-Tong Liou
    Jiin-Cherng Yen
    Wen-Yen Wang
    Jyh-Fei Liao
    貢獻者: 國術系
    關鍵詞: cerebral ischemia-reperfusion
    dimemorfan
    glutamate
    inflammation
    neuroprotection
    日期: 2008-01
    上傳時間: 2010-06-17 09:33:21 (UTC+8)
    摘要: Dimemorfan, an antitussive and a sigma-1 (σ<sub>1</sub>) receptor agonist, has been reported to display neuroprotective properties. We set up an animal model of ischemic stroke injury by inducing cerebral ischemia (for 1 h) followed by reperfusion (for 24 h) (CI/R) in rats to examine the protective effects and action mechanisms of dimemorfan against stroke-induced damage. Treatment with dimemorfan (1.0 μg/kg and 10 μg/kg, i.v.) either 15 min before ischemia or at the time of reperfusion, like the putative σ<sub>1</sub> receptor agonist, PRE084 (10 μg/kg, i.v.), ameliorated the size of the infarct zone by 67–72% or 51–52%, respectively, which was reversed by pre-treatment with the selective σ<sub>1</sub> receptor antagonist, BD1047 (20 μg/kg, i.v.). Major pathological mechanisms leading to CI/R injury including excitotoxicity, oxidative/nitrosative stress, inflammation, and apoptosis are all downstream events initiated by excessive accumulation of extracellular glutamate. Dimemorfan treatment (10 μg/kg, i.v., at the time of reperfusion) inhibited the expressions of monocyte chemoattractant protein-1 and interleukin-1β, which occurred in parallel with decreases in neutrophil infiltration, activation of inflammation-related signals (p38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription-1), expression of neuronal and inducible nitric oxide synthase, oxidative/nitrosative tissue damage (lipid peroxidation, protein nitrosylation, and 8-hydroxy-guanine formation), and apoptosis in the ipsilateral cortex after CI/R injury. Dimemorfan treatment at the time of reperfusion, although did not prevent an early rise of glutamate level, significantly prevented subsequent glutamate accumulation after reperfusion. This inhibitory effect was lasted for more than 4 h and was reversed by pre-treatment with BD1047. These results suggest that dimemorfan activates the σ<sub>1</sub> receptor to reduce glutamate accumulation and then suppresses initiation of inflammation-related events and signals as well as induction of oxidative and nitrosative stresses, leading to reductions in tissue damage and cell death. In conclusion, our results demonstrate for the first time that dimemorfan exhibits protective effects against ischemic stroke in CI/R rats probably through modulation of σ<sub>1</sub> receptor-dependent signals to prevent subsequent glutamate accumulation and its downstream pathologic events. [ABSTRACT FROM AUTHOR]
    Copyright of Journal of Neurochemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
    關聯: Journal of Neurochemistry Vol. 104 Issue 2, P.558-572
    顯示於類別:[技擊運動暨國術學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbText949檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋