當NO逸散在空氣中會造成的環境問題,是因為NO的化學活性很活潑,容易與大氣中的氧(O2)結合形成有腐蝕性的二氧化氮(NO2)後再與水(H2O)反應形成硝酸(HNO3),因此試著將NO氫化合成氨氣與水(NO+H2→NH3+H2O)加以利用,既能保護環境也可以額外產生工業常用的原料氨氣。本篇的研究目的,為利用不同基板,有體心立方晶格的塊材金屬面,如Fe(111)、W(111)等催化模型,來探討NO氣體之吸附方式、反應機制,同時針對該反應系統進行詳盡的電子分析。Fe(111)與W(111)反應路徑都是在NO與H原子共吸附時,發生N-O斷鍵後分別氫化產生氨氣及水。為瞭解吸附物和表面的交互作用,我們也將提出電子結構的相關資料進行討論。經由這些研究結果我們可以協助業界去設計出更有效率的表面基板,並提供較完整且穩定的反應機制來將NO轉換成毒性較低或者是具有經濟利益的化合物,來降低NO所造成的生物危害。計算結果顯示在Fe(111)、W(111)表面的吸附結構相似,在反應路徑中有部分氫化反應機構相同。
It will be a environmental problem if the NO diffuse to the air, and then the NO will combine with atmospheric oxygen effectively forming the corrosive nitrogen dioxide (NO2) and then react with water (H2O) producing nitric acid (HNO3). Therefore, our purpose of this study is trying to address the fully pictures for the adsorption and hydrogenation behaviors of NO on Fe(111) and W(111) surfaces. To gain detailed knowledge into the catalytic processes of the co-adsorption behaviors of NO and H2 molecules on the surfaces of Fe(111) and W(111), the physical insights between adsorbate/substrate interaction and interface morphology are subjected to a detailed electronic analysis. In our predicted catalytic process, it is found that the hydrogenation mechanisms of NO on both Fe(111) and W(111) are generally the same, including the co-adsorption of NO and H, breaking its N-O bond, forming ammonia (NH3) and water (H2O) eventually. All the information predicted by theoretical approaches would be difficult to accomplish with experimental measurements, indicating that the periodic DFT calculations could play a important role in the prospective design of high-performance catalytic surfaces for the hydrogenation of NO, in which we expect to effectively covert it to the unharmful and useful products.