We model the superfluid properties of a trapped exciton-polariton condensate under non-resonant excitation subjected to a rotating defect. With increasing the linear velocity of rotating defect, the density modulation can be classified into superfluid-like regime, parabolic-like regime, Cherenkov regime and over-Cherenkov regime. The threshold-like behavior of drag force and the onset of turbulent fringes can define the critical velocity for the superfluidity. Based on the perturbative drag force in the Bogoliubov-type analysis, the rigid modes with gapped excitation spectrum have higher critical velocity than that of the soft modes. (C) 2015 Elsevier Ltd. All rights reserved.