English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11867497      線上人數 : 709
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/30612


    題名: Variational principle for topological pressures on subsets
    作者: Tang, Xinjia
    Cheng, Wen-Chiao
    Zhao, Yun
    貢獻者: Dept Appl Math
    關鍵詞: Measure-theoretic pressure
    Variational principle
    Borel probability measure
    Topological pressure
    日期: 2015-04
    上傳時間: 2015-10-23 14:39:21 (UTC+8)
    摘要: This paper studies the relations between Pesin-Pitskel topological pressure on an arbitrary subset and measure theoretic pressure of Borel probability measures, which extends Feng and Huang's recent result on entropies [13] for pressures. More precisely, this paper defines the measure theoretic pressure P-mu(T, f) for any Borel probability measure, and shows that P-B(T, f, K) = sup{P-mu(T, f) : mu is an element of M(X), (mu)(K) = 1}, where M(X) is the space of all Borel probability measures, K subset of X is a non-empty compact subset and P-B(T, f, K) is the Pesin-Pitskel topological pressure on K. Furthermore, if Z subset of X is an analytic subset, then P-B(T, f, Z) = sup{P-B(T, f, K) K subset of Z is compact}. This paper also shows that Pesin-Pitskel topological pressure can be determined by the measure theoretic pressure. (C) 2014 Elsevier Inc. All rights reserved.
    關聯: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷: 424 期: 2 頁碼: 1272-1285
    顯示於類別:[應數系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML368檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋