博弈論涵蓋生物學、經濟學、政治學、鷹鴿賽局等等領域的應用,而其中鷹鴿賽局適用於策略分析。鷹鴿賽局適用於解決雙方參賽者對於共同資源的競爭,而對於商業之獨占市場的寡頭經濟部分,學者Hsieh, Yuan, and Liu (2012)提出一個專為寡頭服務提供商所設計的鷹鴿賽局,能注重顧客期望並提高顧客滿意度。
本研究以博弈理論中的鷹鴿賽局理論為基礎,以問卷調查法作為基礎,利用問卷來進行教師期望與學生期望的賽局。賽局採用課外輔導時間、回覆網路訊息速度、發還作業速度等三個向度進行多個回合課堂對答方式進行實驗假設的驗證。三個向度中以發還作業速度之向度最快達到穩定,而課外輔導時間和回覆網路訊息速度等向度也在多個回合後達到演化穩定狀態。
研究結果得知課外輔導時間、回覆網路訊息速度、發還作業速度等三個向度可縮小學生期望和教師期望的落差,兼提升學習滿意度。
本研究考慮教師期望與學生期望所設計的鷹鴿賽局縮小學習期望與現實的落差,也讓教師期望更符合實際教學情形,以供教學者參考使用。
Applications of game theory includes biology, economics, and political science. Hawk-dove games are applicable to resolve their contestants compete for a common resource. Hsieh et al. (2012) designed a hawk-dove game for oligopoly service providers to managing customer expectations.
Based on the hawk-dove game theory, this study defines a game on the interactions of a teacher and his/her college students. The game is supposed to narrow the learning gap between the teacher expectations and student’s expectations.
This study used classroom repartee way to verify the experimental hypothesis. The results show that the expectations gap can be narrowed in three dimensions. Besides, dimensions of the tutoring-time, the speed of replying messages and time of getting back homework enhance the learning satisfaction.
This study focused on teacher expectations, student expectations, and expectation gap among a teacher and students. And also this study could be support teacher expectation that more in line with actual teaching situation.