The accurate analytical and numerical calculations of the electronic band structure and ground state properties of strongly correlated electrons within the Hubbard model are performed by constructing convergent perturbation theory for general interaction strength and electron concentration. We test the developed perturbation approach about mean field solution in the extreme conditions of one dimensionality for entire parameter space of electron interaction U/t and electron concentration n. The many-body perturbation formalism up two second order about the generalized self-consistent field (GSCF) Hamiltonian goes beyond the range of applicability of standard perturbation theory by incorporating systematically the effect of the random-phase-type perturbation techniques and controlled expansion of the energy functional for general U/t and n. The second order perturbation correction vanishes at small and large U/t limit and performed calculations of the ground state energy show a next to the perfect numerical agreement with the Bethe-ansatz results.
關聯:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B Volume: 17 Issue: 18-20 Pages: 3363-3366 Part: Part 1