English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11846167      線上人數 : 472
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2878


    題名: Competitive algorithms for the clustering of noisy data
    作者: Yang TN
    Wang SD
    貢獻者: 資科系
    關鍵詞: clustering
    outlier set
    algorithms
    日期: 2004
    上傳時間: 2009-11-27 11:56:39 (UTC+8)
    摘要: In this paper, we consider the issue of clustering when outliers exist. The outlier set is defined as the complement of the data set. Following this concept, a specially designed fuzzy membership weighted objective function is proposed and the corresponding optimal membership is derived. Unlike the membership of fuzzy c-means, the derived fuzzy membership does not reduce with the increase of the cluster number. With the suitable redefinition of the distance metric, we demonstrate that the objective function could be used to extract c spherical shells. A hard clustering algorithm alleviating the prototype under-utilization problem is also derived. Artificially generated data are used for comparisons. (C) 2002 Elsevier B.V. All rights reserved.
    關聯: FUZZY SETS AND SYSTEMS Volume: 141 Issue: 2 Pages: 281-299
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbText879檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋