English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11844136      線上人數 : 648
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2839


    題名: Predicting the geographical distribution of plant communities in complex terrain - a case study in Fushian Experimental Forest, northeastern Taiwan
    作者: Chang CR;Lee PF;Bai ML;Lin TT
    貢獻者: 景觀系
    日期: 2004
    上傳時間: 2009-11-23 11:16:33 (UTC+8)
    摘要: Ecosystem management and biodiversity conservation are usually implemented using information of several targeted species or cover-types and usually do not include information about communities. This is not because community-level information is unimportant for management purposes, but because the detailed fieldwork required for gathering community-level information at the scale for ecosystem management is usually impractical. We propose two methods to estimate the geographical distribution of plant communities with the objectives of covering large areas with minimal field efforts. The first method estimates the geographical distribution of plant communities by combining clustering methods with vegetation modeling, and the second extrapolates the geographical distribution of gradients in plant communities by combining gradient analysis with vegetation modeling. Vegetation modeling with clustering methods can be used to allocate sites with potentially higher alpha diversity, with the benefit of having a list of species associated with the clustered type. Vegetation modeling with gradient analysis can be used to identify regions with potentially the highest beta diversity by means of selecting regions with the widest range or highest variability in major DCA axes scores, and thereby help to preserve the scope of environmental conditions that lead to diversity in species assemblages. This is especially important because biological entities such as species, communities, or even ecosystems may cease to exist in the long run, and the preservation of processes that lead to biodiversity will eventually become more meaningful. We conclude that new methods to study and manage the processes that contribute to biodiversity at all scales should be and can be developed.
    關聯: ECOGRAPHY Volume: 27 Issue: 5 Pages: 577-588
    顯示於類別:[景觀學系所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋