English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11872154      線上人數 : 403
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28335


    題名: 以綜合式人工類神經網路方法 預測股價指數:以泰國為例
    Forecasting stock index with an integrated ANN method: A Thailand case
    作者: 周若瑄
    Kamsorn, Parichat
    貢獻者: 國際企業管理學系
    關鍵詞: forecasting stock price
    artificial neural networks
    backpropagation
    wavelet neural network
    SET index
    日期: 2014-06
    上傳時間: 2014-09-30 17:14:11 (UTC+8)
    摘要: Stock price is basically sensitive, non-stationary and very noisy. Many environmental factors are the important variables in stock price change, especially in emerging markets. To forecast stock price, this study proposed the developed integration artificial neural networks (ANNs) using the Wavelet De-nosing-based Back propogation (WDBP) neural network. The main purpose of the wavelet de-composition is to classify the basic elements from the noise of the signal. The used data in this experiment were the monthly closing prices of Stock Exchange of Thailand (SET) index during January 2001 to April 2014. To show the improved integration of using WDBP method, this paper applied three accurate measures to evaluate the forecasting performance. Following this paper methodology, the investors could be guided in investment providing deviation and direction of stock indexes and maximization profits in the emerging stock market.
    顯示於類別:[企業管理學系暨國際企業管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    fb140930171348.pdf2017KbAdobe PDF525檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋