The objective of this work was to study changes in low molecular weight antioxidants and antioxidative enzymes in chilling-stressed sweetpotato, as affected by paclobutrazol (PBZ) pre-treatment 24 h prior to exposure to chilling conditions. Sweetpotato 'TN71' and 'TN65' were treated with 300 mg PBZ/5 ml/plant, after which plants were subjected to 7 degrees C/7 degrees C (day/night) for periods of 1, 3 and 5 days, followed by a 3-day recovery period at 24 degrees C/20 degrees C (day/night). A factorial experiment in completely randomized design with four replications was used in this study. Young fully expanded leaves at each temperature and period of time were clipped for antioxidative system measurement. We concluded that different varieties displayed variations in their oxidative system, and the differential expressions of each genotype were associated with chilling stress response. Plants with various antioxidative systems responded differently to chilling stress according to the duration of the chilling period and subsequent re-warming period. ASA, GSH and GSSG contents were enhanced in TN71 prior to chilling stress. Increased APX, GR, ASA and MDA activities accounted for chilling tolerance in TN65. Furthermore, our results indicate that the elevated levels of the antioxidative system observed after PBZ pre-treatments afforded the sweetpotato leaf improved chilling-stress tolerance. The levels of ASA and GSSG of both TN71 and TN65 under chilling were significantly raised by pre-treating with PBZ. PBZ pre-treatment exhibited the important function of enhancing the restoration of leaf oxidative damage under chilling stress and increasing the chilling tolerance of plants to mitigate chilling stress effects.