「晶圓測試」需要應用以大量微探針所組成之探針卡做為測試機與晶片焊墊間的測試媒 介,檢驗晶片電路的良窳;然而,不當的探針設計參數或測試條件,會使探針因電熱效應而 失去應有的強度,發生「跪針」或「燒針」現象;在數值分析上屬於「多重物理電-熱-結 構」耦合分析問題。近年來陸續有懸臂式探針的研究發表【7-15】,但鮮見晶圓測試產業廣 用來測試陣列式銲墊晶片的「垂直式探針」研究,為了瞭解垂直式探針的測試行為與失效成 因,本計畫提出三項延續性的研究課題: (一) 垂直式晶圓探針卡之微探針 接觸實驗 與有限元素分析;(100年計畫) (二) 垂直式晶圓探針卡之微探針 多重物理電-熱-力 耦合分析與實驗;(101年計畫) (三) 應用基因演算法與有限元素法探討微探針 最佳化設計 問題。 本研究以實驗與數值方法探討晶圓測試中探針的「接觸行為」與「電熱效應」,設計製作垂 直式 Cobra 探針針壓與電熱測試平台,利用高速攝影機擷取測試探針的動態影像, 應用 電腦視覺與數位影像方法觀察微探針的接觸過程與電熱效應。應用實驗方法,探討以「接 觸針壓」與「接觸電阻」為分析特性的最適設計;最後,根據模擬與實驗的分析結果,結合 基因演算法進行微探針最佳化設計研究。本計畫的完成,將可大幅提升微探針的研究能量 與晶圓測試探針卡的設計水準。 101 年度所提之兩年期計畫,核准一年(NSC 101-2221-E-034-001),本計畫除了報告研究 的執行現況外,根據前計畫第二年的研究內容,提出 102 年度專題計畫申請案。 Wafer testing requires a probe card, which equips a mass of micro-probes, as a detecting medium between the testing machine and examined wafer. However, an improper needle structure or testing parameters would cause ‘kneeling needle’ and ‘burning needle’ resulting from the strength losses by the thermoelectric effects in probing. This is a multiphysics structural-thermo-electric coupled problem in numerical analysis. Several researches in cantilever needles have been published [7-19], while literatures about the vertical needle generally used in array-type pads detection are rare. In order to find out micro-needle’s behavior and failed reasons, this study proposes a three-year project, the main topic are: (1) Contact experiments and finite element analyses on the micro-needle used in vertical wafer probe card. (project in NSC100) (2) Structural-thermo-electric coupled analyses and experiments on the micro-needle used in vertical wafer probe card. (project in NSC101) (3) Using the genetic algorithm and finite element method on micro-needle design optimization. This study applies experimental and numerical methods to investigate contact force and thermoelectric effect of the micro-needle during the probing process. A probe testing platform for the vertical Cobra needle is built for contact force and thermoelectric measurements. Dynamic images of the examined needle are captured by a high-speed camera. The probing processes can be recorded and observed by computer vision and digital image processing methods. Experimental methods are used to investigate the preferred designs and testing conditions on the issues of contact force and resistance. Final, design optimization of the micro-probe is conducted by genetic algorithm. After this project, the study capacity and design level in the micro-probe used in vertical wafer probe cards can be promoted substantially.