Nowadays, the consumption of the electrical energy on the world rises considerably. Wind energy has become one of an acceptable alternative energy in many generate electrical ways because it is safe and clean renewable - energy source and have economic benefits.
In this thesis, the modeling of wind turbine systems (WTS) applying DFIG is proposed. The mathematical of WTS is analyzed theoretically and simulation is performed in LabVIEW platform. Besides, controllers are also applied into this system. The Proportional – Integral – Derivative (PID) algorithm is the most common control algorithm used in industry, especially in servo motor control. PID controllers are often used when these controllers are needed to close the loop and sometimes the complex plane has not enough stable in margin, or the performance is less than requirements. In this study, PID controller is applied into WTS to control the pitch angle. All of characteristic parameters, the power generation process and control responses can be observed easily on LabVIEW through human machine interface (HMI). This HMI not only shows the extensive look of the whole system but also allow the user to import or editing necessary parameters for calculation, monitor and control of system.
Additionally, a comparison of the output responses of P, PI and PID controllers is implemented by LabVIEW and Matlab and comparison in performance of LabVIEW and Matlab environments is also implemented in this study. From the simulation results of the system with the controllers indicated that PID controller has not only faster rising time, settling time response but also small steady-state error, overshoot is lower than the conventional P and PI controllers. Computing time in LabVIEW environment is less than Matlab with value which calculated in this study.