English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11866554      線上人數 : 536
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24172


    題名: An Integral Predictive Model of Financial Distress
    作者: Lee, M (Lee, Mushang)
    Wu, TC (Wu, Tsui-Chih)
    貢獻者: 財金系
    關鍵詞: financial-distress-prediction model
    stepwise regression
    data mining
    rough set
    decision tree
    neural network
    logistic regression
    日期: 2012-11
    上傳時間: 2013-02-19 13:23:09 (UTC+8)
    摘要: Traditional statistic models for financial distress are subject to constraints which may lead to imprecise prediction. To contribute to the issue, we construct a two-staged integral model by applying a stepwise regression analysis and a data-mining approach. Specifically, we employ stepwise regression and rough set analysis in feature selection to sieve out variables, and perform decision tree, neural network, and logistic regression analysis to classify firms with financial distress. The findings show that the rates of accuracy for the combinations in descending order are stepwise regression-logistic, stepwise regression-neutral network, stepwise regression-decision tree, rough set theory-neutral network, rough set theory-decision tree, and rough set theory-logistic.
    關聯: JOURNAL OF TESTING AND EVALUATION 卷: 40 期: 6 頁數: 931-938
    顯示於類別:[財務金融學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML362檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋