English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11854767      線上人數 : 529
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24059


    題名: Enhanced optoelectronic performance from the Ti-doped ZnO nanowires
    作者: Chang, LW (Chang, Li-Wei)
    Sung, YC (Sung, Yung-Chiao)
    Yeh, JW (Yeh, Jien-Wei)
    Shih, HC (Shih, Han C.)
    貢獻者: Dept Chem & Mat Engn
    關鍵詞: THERMAL EVAPORATION METHOD
    FIELD-EFFECT TRANSISTOR
    OXIDE THIN-FILMS
    NANOBRIDGE DEVICES
    ELECTRICAL-PROPERTIES
    TRANSPORT-PROPERTIES
    DEPOSITION
    ARRAYS
    CONDUCTIVITY
    FABRICATION
    日期: 2011-04
    上傳時間: 2013-01-24 13:18:47 (UTC+8)
    摘要: Ti-doped ZnO nanowires (NWs) were fabricated by thermal evaporation and metal vapor vacuum arc (MEVVA) ion implantation process. The effect of Ti doping on the structure, morphology, and electrical/optical properties of the as-grown NWs was investigated. The fraction of Ti doping was estimated to be 1 at. % to 2 at. % based on energy-dispersive x-ray spectroscopy (EDS). The x-ray diffraction analyses indicated that Ti-doped ZnO NWs are similar to ZnO NWs in crystal structure, which has been taken to indicate that no titanium oxide phase was produced. Cathodoluminescence (CL) spectra taken from the Ti-doped ZnO NWs at room temperature showed two distinct emission peaks, at 374 nm and at 752 nm. Electrical measurements showed that the resistivity of a single ZnO NW decreased from 1.22 x 10(-1) Omega cm to 3.5 x 10(-2) Omega cm with Ti doping. The semiconducting parameters of bent Ti-doped NWs squeezed between two approaching contacts inside the pole piece of the microscope were determined on the basis of experimentally recorded I-V curves. The approach suggests that one-dimensional nanostructures are suitable for application as optoelectronic devices. (C) 2011 American Institute of Physics.
    關聯: JOURNAL OF APPLIED PHYSICS 卷: 109 期: 7 文獻號碼: 074318
    顯示於類別:[化學工程與材料工程學系暨碩士班] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML354檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋