English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11847901      線上人數 : 473
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2387


    題名: Preparation and properties of biodegradable poly(butylene succinate)/starch blends
    作者: Lai, S.M.;Huang, C.K.;Shen, H.F.
    貢獻者: 材料科學與奈米科技研究所
    日期: 2005
    上傳時間: 2009-10-30 13:15:51 (UTC+8)
    摘要: The vital differences between the use of untreated starch and gelatinized starch in blends with poly(butylene succinate) (Bionolle) were thoroughly examined in this study. The melting temperature decreased slightly with increasing dosages of untreated and gelatinized starch. The added starch perhaps tended to disrupt the intermolecular hydrogen bonding within the Bionolle matrix. On the other hand, a large increase in the crystallinity was seen with the addition of starch. Starch appeared to play a nucleating role in the blends. The trend of the glass-transition temperature decreasing with the starch level was similar to the trend of the melting temperature. For the same starch content, the glass-transition temperature showed some variations. For blends containing a certain amount of gelatinized starch, the thermal stability remained to a certain degree but continued to decrease. This was ascribed to the relatively low heat stability of starch. As for the mechanical properties, a significant increase in the tensile strength (up to 2 times) was observed when untreated starch was replaced with gelatinized starch in the blends. Similarly, the tear strength increased up to 1.5 times if gelatinized starch was employed. Apparently, the gelatinization of starch was efficiently achieved for promoting its compatibility with Bionolle. In all cases, the mechanical properties of Bionolle blended with gelatinized starch were better than those of Bionolle blended with untreated starch. A morphological investigation provided evidence in support of these findings. This relatively low-cost gelatinization approach provides an alternative to a high-cost compatibilizer approach for improving the performance of biodegradable blends. (C) 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 257-264, 2005.
    關聯: JOURNAL OF APPLIED POLYMER SCIENCE v.97 n.1 Pages: 257-264
    顯示於類別:[化學工程與材料工程學系暨碩士班] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbText1707檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋