諾貝爾獎物理學得主Richard Feynman教授於1959年曾設想:」There is plenty of room at the bottom」,給予極微小的科技發展無限的想像空間。奈米科技絕非是尺寸上的差異而已,重點在 於當尺寸介於1- 100 nm下所展現出的多樣變化性質,如:光學、電學、熱、磁、力及催化等特性。 在紡織的領域中,奈米科技的應用已步入成長階段,其中以添加奈米微粉來改變纖維機能性為主, 尤其在織物的抗菌除臭、防霉、遠紅外線效果、抗紫外線、導電與阻燃最為明顯。另外有關於奈 米薄膜以及奈米塗佈貼合也是紡織品研究的重點。 本計畫之目的為研究電漿輔助之化學氣相沉積鍍膜系統於纖維紡織品表面處理與生醫應 用。首先以開發基材溫度為100 ℃以下之低溫鍍膜製程為主要標的,於纖維表面沈積抗菌金屬薄 膜與抗菌金屬奈米合金顆粒,並研究薄膜及奈米合金顆粒對高分子界面的附著性、微結構、化學 成分、抗菌性、抗沾黏性、生物相容性、製程條件與性質間的關係,做一有系統的探討。 本計畫為二年計畫,於執行上可分為三個階段: 1. 纖維紡織品鍍膜前表面活化:以電漿處理為主要實施方法,針對不同基材材質與後續鍍膜製 程,開發最適當之參數調配流程。 2. PVD 之金屬鍍膜與奈米金屬顆粒沉積:以膜厚300 nm 以下之奈米孔洞薄膜與顆粒大小200 nm 以下之奈米金屬顆粒為目標,完成抑菌值大於3.0、抗菌值大於2.0 之金屬薄膜與奈米金 屬顆粒(< 200 nm)。 3. 生物相容性:以細胞毒性試驗為主要驗證方法,金屬抗菌膜或奈米金屬顆粒在細胞培養期間 結束時,其存活率須大於50%。
Richard Feynman, the Nobel Prize winner in physics had imagined in 1959: 「There is plenty of room at the bottom」,offers the pinpoint imagination space of development in science and technology. Nanotechnology is absolutely not a difference in sizes; the important point is its versatile physical changes especially in range 1-100 nm, such as in optics, electricity , heat , magnetics , mechanics, catalysis ,etc.. In the ambit of textile, the application of nanotechnology has already stepped into the growth stage, by adding nano-powders to change the properties and application of textile, especially in antimicrobial and deodorization、anti-fungi、far infrared ray effects、ultraviolet shielding、electric conduction and fire-retardant. In addition, nano-film and nano-coating technology are also the key issue in the field of textile. This study proposes the use of plasma enhanced CVD (PECVD) system to activate the surface of textile for biomedical applications. The main focus will be on the substrate temperature below 100 ℃ in a PECVD process to deposit an antiseptic metal films and nanoparticles on the textile, and to investigate the adhesion with polymer、microstructure、chemical composition、antiseptics、anti-moisture、 biocompatibility、process parameters and properties can be systematic discussions. This proposal is designed for a two-year program and can be divided into three stages: 1. Surface activation process before the depositing of the film on the textile: Using a specially formulated plasma to activate and to generate functional groups on the surface of the textile (atomistically). 2. PECVD processes of metallic muti nano-films and nanoparticles deposition: Parameters of porous films with thickness <300 nm and with particles size <200 nm are optimized as follows: the bacteriostasis value >3.0 and the antiseptic value >2.0. 3. Biocompatibility: Cell poisoning is the major test methods to prove the survival rate of the living cells on the metal or on the a-C:F films which must be >50%.