摘要: | 以輪式探測機器人為基礎的環境探測系統具有移動、採集識別和傳輸數據的特性,能在人類不易進入的現場採集環境數據、影像、自我導航,再將數據傳輸給閘道器節點與遠端電腦,然後進行資料整理、分析、歸納與判斷;探測機器人是智慧型機器人的一種,以此類機器人為基礎的環境監測系統的開發需要微處理機、控制、影像辨識、定位導航與無線傳輸整合等技術的結合;因此,整個系統性能的提升,除了機構的最佳化設計外,上述技術是重要的影響因素。輪式探測機器人在位置伺服驅動進行前,需有正確快速的影像辨識結果。此研究計畫係針對光線不足、物體遮擋或攝影角度差異造成的辨識錯誤與重複,在影像辨識架構中,採用兼具穩定性與可塑性的不變矩與模糊推理機制,以因應環境的變化;另外此研究亦將針對因摩擦力、藕合間隙、馬達參數及負載變動等因素造成的擾動非線性現象,設計一智慧型馬達位置伺服控制器,架構中,將滑動面及自我調變的平移寬度植入模糊推理引擎,以克服系統的非線性與擾動,有效提升伺服系統的精度及穩定性。接著,為使探測機器人能將蒐集到的數據傳回閘道器節點與遠端電腦,或是探測機器人能夠接收遠端電腦的命令(例如追蹤新的標的物),在探測機器人與閘道器節點間以ZigBee無線方式通訊,而閘道器節點與遠端電腦,則以USB或WLAN方式連接,以發展成為功能完整的無線環境探測系統。此研究提出兩年期的計畫,第一年計畫:在機器人發展平台ART下,針對輪式探測機器人的巡弋過程,發展影像辨識與定位伺服控制器,其中影像辨識係不變矩與模糊推理機制的整合,而定位伺服控制器,則由滑動面及具有自我調變能力的模糊推理引擎所構成,已完成的工作: (1) 探測機器人平台建置與分析。 (2) 輪式探測機器人的平面運動及伺服馬達的動態方程式推導。 (3) 不變矩與模糊推理機制及適應模糊控制器的推導與設計。 (4) 影像辨識與定位伺服控制之Matlab模擬。 (5) 目前正在ART下發展將(4)之Matlab程式轉換為C++程式,植入嵌入式電腦中,進行整合測試與除錯。第二年計畫:以第一年發展的具有影像之輪式探測機器人為基礎,在機器人上加入雨滴、霍爾、火源、溫溼度、光照度感測器及無線電收發器,然後在機器人與閘道器節點間以ZigBee無線方式通訊,閘道器節點與遠端電腦端以USB或WLAN方式連接,以無線方式獲取環境數據,預計完成工作: (1) 使用ZigBee/IEEE 802.15.4協定,建置無線感測系統(已部分完成)。 (2) 在ART下發展閘道器節點、遠端電腦與機器人端通訊程式。 (3) 整合測試與除錯。 (4) 家電設備遠端監控。
Wheeled-exploring-robot based environmental monitor system possesses some salient features, such as movement, sensing, gathering, identification and data communication, etc. All gathered data must be transmitted to gateway node and computer. Then the arrangement, analyses and decision are carried on the computer. Wheeled-exploring-robot is a kind of intelligent robot and the development of the wheeledexploring- robot-based monitor system needs the combining technologies of microprocessor, intelligent control, image identification, navigation and wireless communication. Besides the optimum mechanism of robot, above technologies are important factors to promote the performance of the monitor system. Before position servo operation, the image identification is necessary to provide the precise position information. So the first part of this project is focused on the design of an image identification auxiliary algorithm to cope with the conditions of insufficient light, masked object or detection angle difference. The combination of moment invariant method and fuzzy inference engine are adopted in the identification algorithm to promote its precision. The second part of this project is the design of an intelligent position servo controller to deal with the conditions of friction, coupling gap, variation of motor parameters and load, etc. In the control architecture, the sliding surface and adaptive translation width are embedded into fuzzy inference engine to cope with the nonlinearity, disturbance and to increase the precision and stability. The third part of this project is focused on the wireless data communication to form an integrated environmental monitor system. The adopted communication protocol between the exploring-robot and gateway node is ZigBee, while the USB or WLAN is utilized to communicate between the gateway and remote computer. This project is divided into two subprograms and the execution duration is two years. The first-year subprogram includes the derivations of a precise image identification algorithm and an intelligent position servo controller for exploring-robot. Then these algorithms are programmed and debugged under the ART environment. Following works have been completed: (1) Establishment and structure analyses of the wheeled-exploring-robot. (2) Derivation of planar motion and dynamic equation. (3) Design of image identification algorithm and intelligent position servo controller. (4) Matlab simulation of image identification and position servo control. (5) Programming and debugging above algorithms under ART are proceeding. The second-year subprogram includes the development of wireless communication to form a monitor system. Firstly, the raindrop, hall, fire hazard, temperature/humidity, light sensors and transmitter/receiver are embedded into exploring-robot. Then following works must be completed in this stage: (1) Establishment of the wireless sensor network. The ZigBee/IEEE 802.15.4 is utilized between the exploring-robot and gateway node. (2) Programming the programs of gateway node, remote computer and exploring-robot under ART. (3) Experimental test and debug. (4) Remote control of electrical appliances. |