摘要: | 酚醛樹脂(Phenolic, PF)由於其具有較優異的機械性質與耐熱性質,其質地堅硬且亦適合生產製造,故在工業上亦是良好的高分子材料,因此廣泛用於絕緣塗料、接著劑、積層材料、模製材料,它雖具有良好的性質與應用,但卻因其缺乏韌性與耐衝擊性不佳,故亦使得其用途受到限制。blocked 聚胺基甲酸酯(blocked PU)為堅韌性極佳之高分子材料,其兼具良好之耐衝擊性質。其質地柔軟,雖具有良好之耐衝擊性,其卻因而使其機械性質和耐熱性不佳,限制了blocked 聚胺基甲酸酯(blocked PU)之應用範圍。因此本計畫旨在利用酚醛樹脂(Phenolic)和blocked 聚胺基甲酸酯(blocked PU) 兩種樹脂之優異特性,利用同時互穿法(SIN)相互改質製成完全且接枝互穿型高分子網狀材料(Full-and-graft interpenetrating polymer network, full-graft-IPN),改善酚醛樹脂之耐衝擊強度,及增進blocked 聚胺基甲酸酯之機械性質、耐熱性與耐燃性,以表現出特異於兩單獨成份的特性。本計畫分兩年執行,其主要目標如下:第一年計畫主要目標如下: 1.合成之blocked 聚胺基甲酸酯預聚合物,尋求合成反應變數,並以GPC 與黏度計來測量預聚合物之分子量與黏度,以FTIR 與NMR 來探討blocked 聚胺基甲酸酯之反應機構。 2.以合成之blocked 聚胺基甲酸酯預聚合物加入其鏈延展劑與酚醛樹脂預聚合物加入其硬化劑,再利用同時互穿法(SIN)讓兩種預聚合物進行聚合及交連反應形成完全且接枝互穿型高分子網狀材料(full-graft-IPN),以尋求聚合反應變數及樹脂、鏈延展劑與硬化劑之適當配方。 3.利用紅外線光譜(FTIR)分析兩種樹脂官能基的消失與生成,探討完全且接枝互穿型高分子網狀材料(full-graft-IPN)之反應機構。 4.利用樹脂黏度反應變化和微差掃描卡計(DSC)測試,探討不同樹脂比例下完全且接枝互穿型高分子網狀材料(full-graft-IPN)之反應性、硬化型態與反應動力學,以尋求適當的加工溫度。 5.利用Cluff 模式來探討完全且接枝互穿型高分子網狀材料之交鏈密度變化情形。 6.利用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)來探討完全且接枝互穿型高分子網狀材料之形態學,以觀察兩樹脂間之相分離情形,酚醛樹脂之增韌與聚胺基甲酸酯增硬情形。第二年計畫主要目標如下: 1.探討在不同酚醛/blocked 聚胺基甲酸酯樹脂配方、不同填充劑含量、與不同後硬化溫度之變數下,完全且接枝互穿型高分子網狀材料(full-graft-IPN)之靜態機械性質,如抗張強度與模數、抗折強度與模數、硬度、耐衝擊強度等。 2.利用動態機械分析儀(DMA)探討完全且接枝互穿型高分子網狀材料(full-graft-IPN)之動態機械性質(E’、E”、tanδ),以研究材料對能量之吸收與高阻尼避震之效果。 3.探討在不同酚醛/blocked 聚胺基甲酸酯樹脂配方、不同填充劑含量、與不同後硬化溫度之變數下,完全且接枝互穿型高分子網狀材料(full-graft-IPN)之熱性質,如熱變形溫度、玻璃轉移溫度(Tg)。並利用熱重分析儀(TGA)探討互穿型高分子網狀材料其熱重量損失與熱裂解溫度變化情形。 4.探討完全且接枝互穿型高分子網狀材料(full-graft-IPN)之物理性質(比重、膨潤性質、溶膠分率)與摩擦學性質(摩擦係數、摩損速率)。 5.探討在不同酚醛/blocked 聚胺基甲酸酯樹脂配方、不同填充劑含量、與不同後硬化溫度之變數下,完全且接枝互穿型高分子網狀材料(full-graft-IPN)之燃燒性質,如極限耗氧指數(LOI)、垂直燃燒試驗(UL-94)等。
Phenolic resin shows the excellent mechanical and thermal properties, which have been widely used in insulated paints, adhesives, laminates materials and mold materials. However, phenolic resin could not be utilized in some applications for lack of impact strength. Blocked polyurethane shows some unique properties, including high impact strength and elasticity. However, blocked PU could not be utilized in some applications for lack of mechanical and thermal properties. Hence, the project is going to synthesize phenolic/blocked PU full and graft interpenetrating polymer network (full-graft-IPN) using simultaneous interpenetrating network method (SIN). The phenolic and blocked PU can modify each other that phenolic can be improved the impact strength, and the blocked PU can be improved the mechanical properties, thermal properties and flame properties. This project must be finished about two years. This research project will include the following subjects: The first year projects will include the following subjects: 1. To synthesized the blocked polyurethane prepolymer and searched synthesized reacted variables. To measured the prepolymer molecular weight and viscosity by GPC and viscometer. To investigate the reacted mechanism of blocked polyurethane by FTIR and NMR. 2. Mixing the synthesized phenolic/blocked PU full-graft-IPN which the blocked PU prepolymer with chain extender and phenolic prepolymer with curing agent, then these resins cured at the same time by simultaneous interpenetrating network method (SIN). To study the polymerization parameters and formation of resin, chain extender and curing agent. 3. Utilizing FTIR analysis that these resins functional groups disappear or grow up to investigate the reactive mechanism of phenolic/blocked PU full-graft-IPN. 4. To study the reactivity, curing behavior and kinetic study of phenolic/blocked PU full-graft-IPN by viscosity change and DSC tests in order to search the optimum processing temperature. 5. To study the crosslinked density of phenolic/blocked PU full-graft-IPN by Cluff model. 6. To study the morphology of phenolic/blocked PU full-graft-IPN by SEM and TEM, etc. So that we can observe the phase separation of two resins, and the phenomenon which phenolic can be toughed and the blocked PU can be more hardness. The second year projects will include the following subjects: 1. To investigate the mechanical properties including tensile strength and modulus, flexural strength and modulus, hardness, impact strength of full-graft-IPN when the change of phenolic/blocked PU formation, filler content, and postcure temperatures, etc. 2. To investigate the dynamic mechanical properties (E’, E”, tanδ) of phenolic/blocked PU full-graft-IPN by DMA. So that it can be study the material’s absorbed energy and high damping effects. 3. To study the thermal properties including heat deflection temperature (HDT), glass transition temperature (Tg). And study the weight loss and thermal degraded temperature of full-graft-IPN by TGA analysis when the change of phenolic/blocked PU formation and filler content, etc. 4. To study the physical properties (specific gravity, swelling ratio and sol fraction) and tribological properties (friction coefficient, wear rate) of phenolic/blocked PU full-graft-IPN. 5. To study the flame properties of full-graft-IPN including limited oxygen index (LOI) and UL-94 when the change of phenolic/blocked PU formation and filler content, etc. |