English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46833/50693 (92%)
造訪人次 : 11853305      線上人數 : 531
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/20886


    題名: Application of SEBAL and Markov Models for Future Stream Flow Simulation Through Remote Sensing
    作者: Wu, CD (Wu, Chih-Da)
    Cheng, CC (Cheng, Chi-Chuan)
    Lo, HC (Lo, Hann-Chung)
    Chen, YK (Chen, Yeong-Keung)
    貢獻者: 景觀系
    關鍵詞: LAND-USE CHANGE
    CLIMATE-CHANGE
    SUCCESSION
    VEGETATION
    DYNAMICS
    日期: 2010-12
    上傳時間: 2011-12-08 16:26:22 (UTC+8)
    摘要: Watershed hydrology, including the volumes of stream flow is widely considered to be influenced by global climate change. Traditional studies using the (GWLF) model to estimate stream flows have relied on evapotranspiration cover coefficient (Kc) obtained from published references. Other factors, such as future land-use status and evapotranspiration (ET) change, are usually not considered. This study aims to improve on traditional studies by including remote sensing techniques to estimate the Kc, as well as integrating the SEBAL model, the CGCM1 model, and the Markov model to predict land-use and ET changes. The chosen study area was in the north of Taiwan. The processes include land-use classification using hybrid approach and Landsat-5 TM images, a comparison of stream flow simulations using the GWLF model with two Kc values derived from remote sensing and traditional methods, and finally the prediction of future land-use and Kc parameters for assessing the effect of land-use change and ET change. The results indicated that the study area was classified into seven land-use types with 89.09% classification accuracy. The stream flows simulated by two estimated Kcs were different, and the simulated stream flows using the remote sensing approach presented more accurate hydrological characteristics than a traditional approach. In addition, the consideration of land-use change and ET change indeed affected the predicted stream flows under climate change conditions. These results imply that the integration of remote sensing, the SEBAL model, the CGCM1 model, and the Markov model is a feasible scheme to predict future land-use, ET change, and stream flow. Therefore, these models will improve future studies of predictions in water resource management and global environmental change.
    顯示於類別:[生命科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML774檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋