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Abstract

Usingthe K> theory to study photonsin a

photonic crystal with defects, we found theincident
photon excites a quasi-particle (QP) of photon from
the periodic background field. This QP contains
an inertial mass, which is dueto energy-storing
mechanism occurring in the photonic crystals.
Wefound that thereisan attractive potential which
islinear proportional to the product of theinertial
mass and the normalized dielectric defect with
V({r)=-er)/(e(r)+€(r)). Itissimilar toquantum
mechanicsthat the trapping of QP can successfully
explain thetrapping effect in defects, which cannot
be explained by microcavity theory.
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Problems of the electromagnetic (EM) wave
propagation in multicomponent composites have
attracted much attention in the past years. The
periodic dielectric structures of three dimensions were
proposed as means of providing greater control over the
dispersion of EM field due to strong interference and
diffraction [1]. It has been observed experimentally
that there exist ranges of frequencies in which
propagation of EM waves is not allowed [2]. These
frequency ranges are termed “photonic band gap” in
analogy with the electronic band gaps in solids. The
periodic-dielectric  structures are called the
photonic-band-gap structures (PBG).

If a small defect is introduced in the photonic
crystal, it is possible to create highly localized-defect

one-dimensional crystals, arbitrarily small defects can
localize modes [3], which is lack of explanation. In
guantum mechanics, there is a phenomenon, like the
trapping effect of defects in PBG, that an arbitrarily
weak attractive potential can bind a state in one
dimensions, but not in three dimensions [4].

From the special relativity, a moving particle with
inertial always has a rest frame. However, there is no
rest frame for the massless photon, since it moves with
the velocity of light ¢ in every frame of reference [5].
It is obvious that a defect can stop and trap a particle
with inertial. A defect cannot stop massess photons,
but it behaves like a cavity to reflect photons under
certain circumstances. Therefore, if a photon in PBG
possesses an inertial mass and there is an attractive
potential to trap photons, we will explain the trapping
effect of defects by proving that the equation of motion
of the envelope function indeed includes an inertial
mass dependent trap potential.

The appropriate EM equation for studying the
photonic crystal is a hermitian equation of magnetic
field H(r):
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wherel (r) is the periodic dielectric constant, and
assumingl ' (1) is the dielectric constant of defects, the
normalized defect dielectric function is then V(r) =
-1°(r) i1 (r) +1°(r)). The defect produces a
structure perturbation on PBG. We expand H(r) in

teems of  Kohn-Luttinger  function [6] as
HO= & A(K)H,,(k, r)exp(- iPx) ,  where
np

P=k-ko, where k is a wave vector lies within the first
Brillouin zone, and k, is a specific wave-vector in
which the band maximum or minimum occurs with P=
[P |<<1 near the band edge and A.(k) being the
expansion coefficients. H,, (k, r) are the Bloch-type
eigenfunctions of Eqg.(1) and the corresponding
eigenvalues are w,y(k), where n is a band index and p
represents the index of physical solutions (wn(k) 1 0)
and unphysical solutions (W,(k) = 0). From Notomi's
discussions [7], we can define the reciprocal
effective-diel ectric tensor [8] near the band edge as: [9]
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where a and b are indices of three different directions
of position vector r.
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Following the calculations of de Sterke and Sipe
[10] and neglecting defects, V(r) =0, we obtain a
time-dependent equation of the envelope function Fy(r,t)
of Eq. (1) for no defect case:
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This equation is the evolution equation of the EM-wave
envelope function under thek P theory, which is the

generalized Klein-Gordon equation and is reduced to
the Klein-Gordon equation [11] in isotropic medium.
This equation indicates there is an energy-storing
mechanism near band edges [12], thus we have defined
my= 71 Wh(Ko)/c? as the inertial mass of quasi-particle of
photon. The inertial mass m, is dependent on the band
index n and is quantized.

Although, by assuming the band mixing is
negligible, we applied the one-band K >p theory to

study photons near band edges. We can 4till extend
the one-band approximation to the two-band
approximation, if the band mixing has to be considered.
As long as the incoming radiation was tuned very close
to one of band edges, it is still possible to define a
single dominating state [10]. Band-mixing effects are
just to renormalize the inertial-mass and the effective
dielectric tensor. The basic physics of the one-band
approximation is unchanged.

Note that the sign of the effective-dielectric
tensor derived from the band curvature is positive near
the band maximum and negative near the band
minimum. Consider the tempora evolution of F.(r,t)
for the positive case of the effective-dielectric tensor
and discuss the negative case later. We shall assume
that the medium is effectively isotropic.  The
effective-dielectric tensor becomes a positive scalar
constant e¢ and the effective speed of the light is

c*=c/~/1 * inthe photonic crystal. We can rewrite Eq.
(3) asthe Klein-Gordon equation:
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which has been used to describe a massive spin-zero
particle in the relativistic field theory [11] with
m=m,| * being the effective mass of the particle. We

- N2+ (mc)}F(r,)=0, (4

then have a quantum theory of EM waves propagating
in PBG, where no Planck constant /i exists. The
existence of an inertial mass induces the concept of an
effective mass in PBG. m=0 in the uniform medium,
because there is only one dispersion minimum
Wh(ko=0)=0 and m,=0.

By applying the well-known quantization
prescription, the momentum operator P=

-is Nand the energy operator E=i h% to Eq. (4),

we obtain the relativistic energy-momentum relation
E%=nf.c**+P%c*? for a QP. This relation shows that a
Bloch photon behaves as a free relativistic QP moving
in a medium with the effective speed of light c*. The
relativistic effect of a free QP is consistent with the
Maxwell equations, where the specia relativity is
satisfied. When the EM wave is entering the photonic
crystal, part of the EM-wave energy is stored as the
inertial mass m, of a QP, according to the relation
m,= 7 wy(Ko)/c?. The rest part of the EM-wave energy
becomes the kinetic energy of a QP, whose velocity v is
not ¢* but becomes v="7 P/m, with v|<<c*, since P<<1.
Therefore EM waves are slowed down near the band
edge, which is consistent with observation by Bayindir
et al. [13]. When the particle leaves the photonic crystal,
the EM wave regains its energy and return to moving
velocity of light with no inertial.

If the PBG includes a defect, the formulas
governi ng the behavior of quasi-particles becomes:
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where U(r)= £ (m.c)2V(r), and + (or -) sign is given
for the air-band QP (or the dielectrLc—band QP). We
have neglected a term containing N V(r) in Eq. (5),
which is in the order of P|V(r)| and is much less than
[U(r)]. U(r) is a potential produced by the defect,
which produces a perturbation in the space of PBG.
U(r) is negative and becomes an attractive potential for
the air-band QP, when we add a dielectric defect for
V(r)<0. When we add an air defect for V(r)>0, U(r)
is still an attractive potential for the dielectric-band QP.
Dielectric and air defects produce donor and acceptor
states, respectively, in the band gap [3]. There is no
attractive potential (U(r)=0), when t~he inertial mass of
a QP is zero (m=0). Then, N V(r) has to be
considered in Eqg. (5) to produce the defect-trapping
effect under certain circumstances such as tota
reflection or reflecting wall for microcavity.
Therefore, from the existence of an inertial mass, a QP
of Bloch photon can be trapped by an arbitrarily weak
attractive potential in one dimension but not in three
dimensions [4].
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We have applied the one-band K > theory to

study photons in PBG with defects. The incident
photon excites a QP from the periodic background field
in the crystal. From the energy-storing mechanism
occurred in PBG, we find, for the first time, that this
QP possesses an inertial.  The QP possesses an inertial
successfully explains not only the trapping effect of
defects analogous to quantum mechanics but also
dielectric and air defects produce donor and acceptor
states in the PBG. The trapping effect of defects in
PBG is smilar to that in quantum mechanics, an
arbitrarily weak attractive potential can bind a state in
one dimension, but not in three dimensions. These
phenomena cannot be explained by the microcavity
theory that has no attractive trapping potential, when
the inertidl mass of a QP is zero (m,=0). This
discovery shall bring a new horizon for experimentalists
to study EM waves propagating near photonic band
gaps. We shal be able to study very fundamental
problems that how and why a photon can be trapped by
a defect in a photonic crystal. We shall send our
results to Physical Review for publication.
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