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Abstract

Using the ke p theory, we have derived
the Klein-Gordon equation to describe the EM
wave propagating in photonic crystals. We
find that the EM field posses an effective
mass, which is the photon energy, divided by
square of the effective speed of light. The
EM field is a massive vector field in photonic
crystals. The transverse and longitudinal
modes of a massive vector field are coupled.
The EM wave propagating in the photonic
crystal possesses a relativistic effect.

Keywords: EM wave, Photonic crystal,
Relativistic effect.
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The problem of propagation of waves in
multicomponent composites has attracted
much attention in the past years. The
periodic  dielectric  structures of three

dimensions were proposed as means of
providing greater control over the dispersion
of the electromagnetic (EM) field [1]. The
material structure, that posses the periodic
dielectric structure is called the photonic
crystals.  When the dielectric contrast, i.e.,
the ratio of the dielectric constants of the
different materials in the crystal, becomes
large enongh, then the dispersion of the EM
waves can have novel and interesting features
due to strong interference and diffraction. It
has been observed experimentally that there
exist ranges of frequencies in which
propagation of EM waves is not allowed [2].
These frequency ranges are termed “photonic

~ band gaps” in analogy with the elecironic

band gaps in selids. Many optical and

microwave devices are now being designed
based on the existence of such photonic band

gaps.
Photonic -band structures have been

calculated for different systems in 1-3
dimensions using various traditional
electronic band structure techniques including
plane wave expansion (2] and Green’s
function method [3]. However, these
techniques are highly computationally
intensive. The ke p theory [4] has been
proved to be a simple and successful method
for describing various electronic properties in
ordered and disordered semiconductors,
without the need for full-scale numerical

calculations. The technique leads to the f-
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sum rule relating the effective mass of a band
to the coupling between energy bands and the
energy separation between bands. This

method has been extended to study

semiconductor superlattices with great success.

Johnson and Hui [5] have proposed using

ke p extension to the scalar EM problem.

An effective dielectric tensor is defined. The
scalar wave function is appropriate for certain
structures, which preserve a definite
polarization, and to other physical problems in
acoustics [6]. It is entirely inadequate in
predicting even qualitatively correct results
for dielectric materials with periodicity in all
three dimensions. The appropriate EM
equation for studying the photonic crystal
should be a hermitian vector equation
proposed by Ho et al [2),

Starting from Maxwell’s equations, by
eliminating the electric field, Ho et af obtain,
for a monochromatic wave of frequency w, the
following hermitian equation for the magnetic

field;
Vx|

VxH= w—;H, €))
E

ar)

where £(r) is the dielectric constant and ¢ is
the vacuum speed of light.
Eq. like
Schrodinger equation in semiconductor.

Applications of
of
We

tensor

(1) are just the applications
have derived an effective dielectric
equation that has a similar structure of the
effective-mass equation in semiconductor and can
be written as
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where A=(%m)*/c’ and n, j are band indices.
Define the volume of the first Brillouin zone as §
and the Kohn-Luttinger function uj(ko,r)ejk‘“,

N

where k, 1s some fixed k vector within the first
The function ui(ke,r) is periodic
in r with the same periodicity as &r). We have

Brillouin zone.

the matrices;

e J—O (ko r)en (k,,r)dr

k)= (27T) I

g; (
Pya (ka):
Uy, )=

&lr

21:)3

(fo) J'

”;(ko)z

2

u® (ky,r) *u; 7 (k,,r)dr,

j u(k,.r)e [(YVC,)(;(T)“ j(ko,r))]dr,
j uf'(k.o,r{(’f i )].u (ko,r)}dr

k, )= %—)ir! i;fzf’(kﬂ,r{izv ou, (ko,r)}dr ,

Pga(kc)"' L;(kﬁ)"

U:: (ko ) “lV; (ko)



and
(k,)= (2” y .[
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From the effective-dielectric
equation, we can use the ke p theory to
study the EM waves propagating near the
photonic band gap without laborious
calculations. The kep theory can be
applied to problems with disorder and
nonlinear response to examine the wave
propagation in a perturbed medium

without the need for numerical

calculations of the whole band structure.
Using the effective-dielectric tensor

of Eq. (2), the hermitian Eq. (1) can be

written as an eigenvlaue equation:

h 2
(P28 e -0,
C c
where
h f
(el - By o5 25,
and § = q-qo. Eq. (3) is the well-known

effective-mass equation, written,
however, in “momentum” space. To
get more useful formulation, we

introduce an envelope function
F ()= [e*C (g,

the integration being over the first Brillouin

zone. Thus, we have
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where i/ and j are indices of three different
directions of v. We can also transform Eq. (4)
back o the time space to study the temporal
evolution of F(r, ¢ We have a tensor
equation:
2ok 2

[h ‘52" %_hz o .V+(ha)n(%))zg*]
c” Ot ¢
F(r,)=0

)

where £ * is the tensor form of the effective-
dielectric constant and 7an identity tensor.
Eq. (5) is equivalent to the Maxwell equation
of Eq. (1), under the ke p theory.
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On the air band, let us consider the
temporal evolution of F(r, 1) for an effective
isotropic medium. The effective-dielectric
tensor becomes a scalar constant e, We

shall define the effective speed of the light

h
c*= and the rest mass p =

c a)n(qo)
—— 2220 ¥,
Je* ¢*

Eq. (5) can be rewritten as
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which is just the Klein-Gordon equation [7] in
The Kiein-
Gordon field can describe particles with the

the relativistic field theory:

rest mass g of spin 0. Under the ko p theory,
we obtain a theory of EM waves propagating
in the photonic crystal. This EM wave is a
massive field with mass M. Mass po1s
converted from part of the total energy of the
EM wave according to the Einstein relation
=mc’. The

longitudinal mode of EM waves in photonic

transverse modes and
crystal are coupled, according to the Proca
theory of spin 1 massive vector field [8].
Electrons are massive, and so the
underlying dispersion relation for electrons in
crystals 1s parabolic. Photons have no mass
in the uniform medium, so the underlying
dispersion relation is linear. But as a result
of the periodicity the photons develop an
effective mass in photonic band structure, and
this should come as little surprise [9].
By applying the well-known quantization
prescription momentumn p=- iV and energy

E=ih§;, we obtain from Eq. (6) the

relativistic relation between energy and

momentum for a free particle of rest mass i

E=plcrHpler?,
(N
Eq. (7) shows that the envelope function of
EM waves behaves like a free relativistic
particle of rest mass u with momentum p.
To study the propagating EM waves in

photonic crystals, we shall consider the
relativistic effect, which is consistent with the
Maxwell equations where the special theory of
relativity is satisfied.

If the relativistic effect is negligible, the
envelope function of EM waves behaves like a
slow motion as
It then follows that the
equation

classical particle with
compared with c*,
Klein-Gordon

Schridinger equation in the non-relativistic

becomes  the

limit.  Under certain conditions, we then
theory of EM

propagating in photonic crystals, where no

have a quantum waves

Planck constant # exists.
It is interesting to note that when &* is

negative in the dielectric band, the effective
mass would become negative which is
certainly invalid. Thus, we have to introduce
a concept of “charge” to analogize with
eleciron and hole in semiconductor. The
photonic band structure is similar to the
conduction and  valence bands in
semiconductor.

Using the ke p theory, we have derived
the Klein-Gordon equation to describe the EM
wave propagating in photonic crystals. We
find that the EM field posses an effective
mass which is the photon energy at specific k,
point divided by square of the effective speed -
of light c*.  The EM field is a massive vector
field in photonic crystals. The transverse and
longitudinal modes of a massive vector field
are coupled. The transverse theory, based on
the assumption that the EM wave is a

transverse wave, may lose its generality for



studying the propagation of EM waves within
photonic crystals.
The EM wave is now massive. Its total

energy satisfies the relativistic relation
between energy and .momentum for a free
particle. The EM wave propagating in the
photonic crystal still posses a relativistic
effect only if the speed of light is expressed by

c*,

woHEARA

In our research project, we have
developed a theory of EM waves propagating
The EM wave is
now massive and described by the Klein-

Klein-Gordon

near photonic band gaps.
Gordon  equation. The
equation is the equation of motion of the
spinless particle, which can be charged.
Therefore we can first conclude that EM
waves propagating near photonic band gaps
are massive and charged. But these
conclusions are contradicted with our usual
belief that EM waves are massless and
uncharged. In order not to contradict with
our usual sense, we can draw the second
conclusion that a new elementary particle is
created by EM ;vaves inside the photonic
crystal. Either the first conclusion or the
second is considering the same story with ﬁvo
opinions.  Both conclusions are correct
theory of EM waves propagating near

photonic band gaps. This discovery shall

bring a new horizon for experimentalists to
study EM waves propagating near photonic

band gaps. We shall be able to study very

fundamental problems that how mass, charge
and particle can be created by EM waves.
We shall send our results to Physical Review

for publication.
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