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Abstract

A bimodal linkage has two potential output angles for any given input angle, and vice versa. The
analysistreats all bimodal linkages as a common problem. A conic curveis derived from the general
input-output equation. The mobility regions of any concerned link are then attained from the
intersection points between the conic curve and a unit circle with the aid of corresponding
differentiation. Thelinkages with one axis of the conic curve passing through the origin are classified
as a selective group. The concise criteria for type determination are shown to be existent for this
group, and the strategies to derive them straightforwardly are developed. Unlike Grashof's ruleis
only applicable to planar four-bar, the criteria developed can be used to determine the type
efficiently for all linkages belonging to this selective group and are certainly preferable. Thelinkages
with prismatic output are also considered. Several examples including RPSPR, RPSC, RSSR, and
RSSP linkages are given for illustration.

1. Introduction

A bimodal linkage is generally defined that it has two potential output angles for any given input
angle and vice versa [1]. Numerous well-known mechanisms, such as planar four-bar, spherical
four-bar, spatial RSSR and RPSPR linkage, belong to bimodal linkages. Although deriving criterion
to determine the type of alinkage or whether a concerned link can make fully rotation is one of the
fundamental issues, only few linkages have been worked out successfully. The type of a planar
four-bar is determined by using Grashof's rule [2]. With the aid of the characteristic of
supplementary linkages, Grashof's rule is applicable to spherical four-bar linkage [3]. RSSR linkage
with zero offsets [4] is the only spatial linkage of which the type determination criteria have been
worked out successfully [5-6].

Because deriving type determination criteria for spatial bimodal linkages can hardly be
accomplished, determining the mobility region directly or deriving sufficient conditions was usually
attempted instead. For RSSR linkage, the concept of relative motion [7-8] and analyzing the
input-output equation or the equation of transmission angle have been tried to obtain a quartic
equation or an €ellipse as well as a circle [9-11]. Therefore, the discriminants of a quartic equation
can be treated as the criteria to determine the type [1, 9, 11], but they are too complicated to be
applied. For the purpose of designing alinkage, the concept of mobility chart was proposed [12-14].
The zones of nonexistence of double-crank and crank-rocker or existence of crank-rocker and
drag-link mechanism were also demarked or derived [15-17]. The RPSPR linkage was analyzed
based on the relationship between a circle and a hyperbola or an ellipse [18]. Although these results
derived [15-18] are more concise than the discriminants of quartic equation, they are just sufficient
conditions.

The derivation of aforementioned literatures mostly focused on a single linkage and the
applicability of the results is limited. Besides, the genuine concise criteria for type determination
[1-3, 5-6] are individually applicable to planar four-bar, spherical four-bar, or RSSR with zero
offsets. In this article, a genera strategy to efficiently determine the mobility regions numerically is
proposed in Section 2. The results are thus general and applicable to lots of bimodal linkages. A
selective group of bimodal linkages that do have concise criteria to determine the type efficiently is
classified in Section 3. The strategies to derive criteria straightforwardly are aso developed
successfully. The favorable criteria can thus be treated as generalized Grashof's rule with
applicationsillustrated in Sections 4 and 5.

2. Analysis of mobility region
Instead of considering only a specified linkage, e.g. RSSR [1, 11] or RPSPR [18], the generdl
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input-output equation applicable to lots of bimodal linkage can be expressed as
(Acoshp+Bsing+C)cosy +(Dcosdp+Esing+F)siny 1)
+Gcosp+Hsng+1=0 (
Thevariables ¢ and y represent the input and output angles, respectively. All other parameters,
such as A, B, .. and |, are constant and related to the dimensions of the linkage. For a given input
angle ¢, none or two real solutions for the output angle v can be solved from the equation
U, cosy +Visny +W; =0 (2
where
U, =Acos¢+Bsing+C
V; =Dcos¢+Esing+F

W; =Gcosd+Hsing + | 3
The sufficient and necessary condition for the existence of real solution of v is
A =U+ V2 -W2>0 4
After substituting Equations (3) into Equation (4), A, can be expressed as
A, =C,cos’ ¢+ C,sin ¢+ Cycospsing + C, cosp + Cssing + Cg > 0 (5)
where
C,=A?+D?-G? C,=2(AC+DF-Gl)
C,=B%+E?-H? Cs =2(BC+EF-HI)
C, =2(AB+DE-GH) Cs=C*+F*—I? (6)

All thevaluesof C; are constant, and the only variable in Equation (5) is ¢ .

Two steps are proposed to find the mobility region for angle ¢ where A;(¢)>0 is satisfied.
Firstly, the limiting angles ¢,;,, satisfying Al(q)”m):o are to be found. As shown in Figure 1,
Ojim» SUch as ¢;;,y @nd i, » @€ the intersection points between the conic curve A,(¢)=0 anda
unit circle after setting X =cos¢ and Y =sin¢. Besides, combining a conic curve and a circle
can lead to a quartic equation and there are four real solutions at most for ¢;;,, -

The second step isto find thesign of dA;/d¢ at each limiting angle ¢,,,, by using

da,;

W 2(-C, +C,)cossing + C,(cos? g —sin? ¢) — C, sing + Cs cosd (7)

If dA;/dd |¢:¢”m1, as shown in Figure 1, is positive, this implies the linkage can be assembled at
O = Olimz + 00 since Aq(¢jimy +50)>0. The term 3¢ represents a small variaion of ¢ .
Similarly, the linkage can be assembled a ¢ = ¢z —8¢ if dA;/d¢ |y <O.

Based on the solved values of ¢;;,, and signs of dA;/d¢ |¢:¢“m , the mobility region, such as

the arc drawn by bold line, of the input link can be determined. The sign of A; is aways positive
or always negative if there is no real solution for ¢;,,. The input link is a crank for A; >0, and
the linkage cannot even be assembled if A; <0. Thesignof A; can be verified by various ssimple
tests, such as checkingthesignof A; =C;+C,+Cq a ¢=0°.
When the mobility region of the output link is considered, Equation (1) can be collected as

(Acosy +Dsiny + G)cosd + (Bcosy + Esiny + H)sing+ Ccosy + Fsiny +1=0 8
Similarly, the function A,(y) asin Equation (5) can be derived and the coefficients as in Equation
(6) are

C,=A%2+B%-C? C4 =2(AG+BH-Cl)
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C,=D?+E*-F? Cs = 2(DG + EH - Fl)

C; = 2(AD + BE - CF) Ce=G%+H?-1? 9)
The limiting angles v;,,, arefound by combining A, =0 and unit circle. The mobility region of
the output link can then be figured out by considering thesignsof dA, /dy |,_,, -

3. Criteriafor type deter mination
The derivation of concise criteria for type determination is dependent on whether the roots of
conic curve A;=0 or A,=0 do exist. Two specid cases when C;=C,=0 and
C3=C5=0 are first focused. When C;=C, =0, Equation (5) is modified by subtracting
Cz(cos2 o+ sin? d— 1) and becomes
(C,—C,)cos” ¢ > -Cgsing—(C, + Cy) (10)
or
(C,=C,)X?>-C5Y -(C, +Cs) (10)
This inequality represents a region related to a parabola with the axis along the Y-axis. Since this
parabola has only one vertex at (0, -(C, + Cg)/Cs), it isfavorable for the analysis. Two conditions
C,>2C, and C; <C, areanalyzed respectively asfollows.
For the condition C; > C,, Equation (10') can be rewritten as
x?>_—Cs [Y—C”CGJ (12)
C-G -GC5
The described region is the outside of the parabola. Two possibilities ensuring that the whole unit
circle lies in the described region are shown in Figure 2. For Figure 2(a), —Cg >0 and the vertex
must be above (0, 1), the inequality can be obtained as

C,+Cs2>2-C520 (12)
The other one is shown in Figure 2(b) when —Cg <0. The vertex is below (0, -1), and the
inequality is

0>-Cs>—(C, +Cq) (13)

Both Equations (12) and (13) can be combined to get the necessary and sufficient condition for the
existence of crank as

C,+Cs+C5>0 (14-1)
C,+Cz-C52>0 (14-2)
Besides, Equations (14) remain applicable to the special condition C; =C,.
For the second condition C; < C,, Equation (10" becomes
x2<=C [y_C2*Co (15)
Cl - CZ - C5
Two cases shown in Figures 3(a) and 3(b) ensure the whole unit circle being within the described
region. Since the vertex must locate outside the unit circle, Equations (14) have to be satisfied as

well. Besides, the parabola cannot intersect with the unit circle becomes the additional constraint.
To simplify the analysis, the equation of the parabolais expressed as

X2 =PY +Q (16)
where
p=—%5  ad Q=2+Ce (17)
Cl - C2 C:2 - C:1

By combining Equation (16) with X2 +Y?2 =1, thisleads to
13



X2 :(ZQ—PZi\/PZ(PZ—4Q+4)) 2 (18)
The parabola doesn’t intersect with the unit circle or the variable X has no real roots if
T,=P?-4Q+4<0 or T,=2Q-P?+,P?(P?-4Q+4)<0 . Besides, the satisfaction of
Equations (14) implies T5 = P2-Q2?<0 and Q= 0. All these constraints are shown in Figure 4
for the purpose of analysis. There are two significant features that should be noted. One is that both
T = P2-4Q+4=0 and T = P2-Q%=0 are tangent to each other at points (2, 2) and (-2, 2).
The other feature isthat both T, =0 and Tz =0 arecoincident at [P>2 or Q>2.Asaresult,
theregion Q>0 can be divided into four different regions for analyzing with the aid of Table 1.
Region I: Thisregionimplies [P >Q>0 and T;>0. Equations(14) isthus unsatisfied.

Region II: Thisregion stands for T, = P2 - 4Q+4<0. Since the variable X has no real roots and
T3 <0, the results as shown in Figures 3(a) and 3(b) can be expected and the link considered can
make fully rotation.

Region I1I: Thisregion is bounded by Ty = p2 —Q2 <0, T, = p2 -4Q+4>0 and Q> 2. Since
T, <0 issatisfied, the link can be a crank.

Region 1V: This region is bounded by T;= P2-Q%<0, T = P2-4Q+4>0 and Q<2.
However, the variable X hasreal solutionsdueto T,>0.

Accordingly, the regions for existence of crank are Il and 111, and the additional constraint is just
one of the following

T,=Cs”—4(C,+Cg)(C, - Cy)+4(C,-C, ) <0 (19-1)
P? = Csz/(cl -G, )2 >4 (19-2)
Q=(C,+C4)/(C,-Cy)22 (19-3)

Meanwhile, each inequality of Equations (19) is a sufficient condition. The union of Equations
(19-1) and (19-2) or (19-1) and (19-3) becomes the sufficient and necessary condition.
The cases with one axis of the conic curve passing through the origin point are then discussed.

By rotating the coordinate with half of angle tan‘l(c%c _c )) the new coefficient C5 within
1 2 -

the modified equation of the conic curve becomes zero. For one axis of the conic curve passes
through the origin, either C, or Cg isalso zero and either Equation (20) or (21) is satisfied.
C,S +1CS, =0 (20)

C,S,-1CS, =0 (22)
where

=39 Y, c,)
51:\/\/(C1_Cz)2 +Cy’ +|C1-Cy

S, :\/\/(Cl_cz)z"‘csz _|C1_C2| (22)

Therefore, the coefficients of a conic equation can be modified as C3=C, =0 or C3=C5=0

by coordinate rotation whenever Equation (20) or (21) is satisfied. Since the equation of unit circle
remains the same after coordinate rotation, the technique for C3=C,=0 or C3=Cg=0 can

then be applied to derive the concise criteria for type determination.
One specia case should be noted iswhen C;=0 and C; =C,. Evidently, the conic curve is

just a circle and Equations (20) and (21) are both satisfied. Moreover, Equation (5) represents the
14



region with a straight line as boundary and becomes
Al = C4COS(I)+C5S'n¢+C6 +C12 O
Hence, the condition for existence of crank isjust

Cg+C; >4/C,2 + C2 (23)
The case C3 =0 implies two axes of the conic curve being parallel to X-axis and Y-axis. If

similar technique as in Figure 4 and Equation (16) is applied, the parabola equation becomes

(X +R)? = PY +Q and has three parameters. Hence, the analysis as in Table 1 cannot be followed

since a tedious three-dimension problem will be met up. Although several sufficient conditions for
the existence of crank might be attained as in [18], the advantage when compared with quartic
discriminants is debatable. Consequently, if the case C; =0 or even general case C3#0 is

considered, solving the mobility region by following the strategy proposed in Section 2 is suggested
with the dimensions of the linkages being assigned.

The analysis in this Section discloses that a selective group of bimoda linkage does have
concise criteria for type determination. The feature is that one axis of the conic curve passes
through the origin. Three special cases among this group are C3=C, =0, C3=C5;=0, and
C,-C,=0=C;. A flowchart is proposed in Figure 5 to illustrate the derivation of concise type
determination criteria. The Equation number with * sign, e.g. (14-1)* or (19-1)*, representsthat C;
and Cg; have to be swapped by C, and C, respectively. Accordingly, this flowchart works as
“standard derivation strategy” and the derivation is straightforward.

4. Analysis of RPSPR linkage
A general RPSPR is dismantled into two manipulators R4P, and R,P, for anaysis, and both
are set on fixed frames Xg—Yo—-Zy and xg—Yyg—2o asshownin Figure 6. Points O and o are
origins, and Y, axisisparalel to y, axis. The skewed angle and distance between Z, and z,
axes are B and f. The offsets are ﬁ:g and on=h. The Denavit-Hartenberg notation
(aj_1,2.1,d;,6;) [19-20] and moving frames X; —Y; —Z; (i=1 and 2) are used to describe the
R;P, manipulator, while (b;_;,vi1,€,1;) and frames xy—-yg—2zo (i=1 and 2) are for the
R,P, manipulator. Among al 16 parameters, ay, og, di, 0,, by, yo, € and t, arezero,
and a;, a4, by and y; are related to the dimension of the linkage. The variables 6, and T4
are the input angle ¢ and output angle . Two other variables are d, and e,. The coordinate
of the point S with respect to the frame X, -Y, —Z, isdefined as %Sy, =[S«,S,,S,]", and is
?Syyz =[S, S, S,1" with respect to frame X, -y, -2, .
The coordinates of the S joint with respect to two fixed frames are thus

°Sxvz = (@ +S)11 +Sy3,+(S, +dy)K, (24)

"Sr = (b1 +S)i1 +§j, + (S, + &)k, (25)
where

|, =1, =[cos@,,sin6,,0]"

J, =[-cosa, sin®,, cosa, cosh,, sina.,]"

K, =[sina,sin6,,-sina, cosd,, cosa,]"

i, =i, =[costy,sint, 0]

j, =[-cosy, sint,,cosy, costy,siny,]"

k, =[siny,sint,,-siny, cost,, cosy,]"
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Besides, °Syy; and °S,,, canberelated by

OSXYZ =T OSxyz +P (26)
where
cosp 0 snp hsinp
T=| O 1 0 and P=|f (27)
-sinB 0 cosp hcosB-g
After substituting Equations (24) and (25), Equation (26) can be expanded as
M Ky TkoJL (S, +dy) (S, +e)] =0 (28)
where

M=(a+S)l;+SyJ,— (b +S)Ti; —§Tj,-P
Because the 3 by 3 matrix [M K, Tk 2] includes only variables ¢ and v, the input-output
equation can be derived from the determinant of [M K, Tk,] being zero. All nine coefficients
asin Equation (1) are derived as

A = (a4 + Sy )cosaySinys + (by + Sy )sino;cosy,

B = -gsino;siny; + hsina,;cosp siny; - Sy siny; + Sysinay cosp

C = -hcososinBsiny, - SycosaysinB

D = gsina, cosPsiny; - hsinoysiny, + Sy cossiny, - Sysinay

E = (a4 + Sy )cosa,cospsiny, -fsina sinBsiny, + (by + S, )sina,;cospcosy,

F = (a4 + Sy )sina,;sinBsiny, - fcoso,cospsiny; — (by + S, )cosa;SinBcosy,

G = gsinaySinBcosy; + Sy sinBcosy,

H = (a4 + Sy )coso;Sinpcosy; +fsinocospcosy, - (b +S, )sinasinBsiny,

| =-(8y + Sy )Sino;cosPcosy, - fcosasinBcosy; - (by +S, )cosocosPsiny, (29)

Example 1. The parameters of an RPSPR linkage are listed as: a,=5, o, =-60°, Sy =8,

Sy =4, by =8, y;=25° S,=3, S, =2,f=25,9=10,h=8,and f =20°.

Sol:  The common approach in analyzing this linkage is to find the output angle for each given
input angle. As shown in Figure 7, the results are obtained for input angle=1, 2, .. , 360
degrees, and Equation (2) was solved 360 times. Findly, the linkage can be judged as
double-rocker by observing the curves, and the mobility regions of input link are around
-20~66 and 96~205.

The technique developed in this article is then applied to analyze this linkage. None of the
coefficients in Equation (1) or (6) are zero for this general RPSPR, and concise criteria do not
exist. The mobility regions are determined numerically.

Step 1: Use Equations (29) to calculate all nine coefficients appeared in Equation (1).

Step2: Regarding the input link, calculate C; and derive the equation A;(¢)=0 by
following Equations (6). By combining Al(d)):O and unit circle, al ¢;;,, are found as
66.7322 (-), 95.6806 (+), 205.1123 (-), and 339.6900 (+). Meanwhile, (+) and (-) represent
the signs of dA;/d |¢:¢“m . The mobility regions are then 95.6806~205.1123 and

-20.3100~66.7322.
Step 3:For the output link, calculate Ci by following Equations (9). It is a crank since thereis

no real solutionfor A, =0 and A, isawayspositive.

Step 4:The type of the linkage is a double-rocker and it becomes a crank-rocker if both input
and output links are swapped.

Severa evident advantages of using present technique are as follows: the computation time
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is reduced extensively, the limiting positions and mobility region can be found out precisely,
and the type of each concerned link can be determined easily without observing any curves.

The RPSPR linkage becomes an RPSC if both P, and R, axes are coincident, and
parameters by, vy, and S, are al zero. Regarding a special case that both input and output axes

are paralel or p=0, the coefficients B, C, D, F, G Cg, C4, Cs, and C,are all zero. Since
C-C,= (f sinocl)2 >0, the criteriafor input link being a crank are just Equations (14) and are
(8212~ (ay + ¢ )?)- 2f (g + S )2 0
(S22 (ay+ S )+ 2f (@, +S¢)> 0
Both inequalities can be combined to get the criterion S, >f +a; + Sy . Similarly, the output link
can make fully rotation if either S, >f +a; +Sy or f >S, +a; +Sy issatisfied.

5. Analysisof RSSR linkage

The RSSR linkage shown in Figure 8 is then analyzed. The lengths of input, output, and coupler
links are defined as a, b, and c. The derivation as for the RPSPR linkage can be followed to derive
the input-output equation. Some coefficients in Equation (6) are listed as

C, = 4a2(b2 cos? B—h?sin? B)

C, =4a%(p? - 12)

C, = -8a’fhsin

Cy= 2(— 4ab?gcosBsinf + 2ahsinf - I)

Cq = 2 4ab?f + 24 1)

Cg = 4b%g?sin®p+4b%f 2 —12

| =a®+ b’ -c®+f?+g*+h*-2ghcosp (30)
Although finding the mobility regions numerically is necessary for general RSSR, type
determination criteria can be derived easily for six special RSSR linkages, such as planar four-bar,

spherical four-bar, smply skewed four-bar and for conic becoming acircle.
If a planar four-bar is considered, the values of g, h, B, C3, and C, are all zero. Both

Equations (14-1) and (14-2) are the criteriafor the input link being a crank and become
(@a+b+c-f)(-a+tb+c+f)(a+b-c-f)(a-b+c-1)>0
(@+b+c+f)(a-b+c+f)(a+b-c+f)(-a+b+c-f) >0 (31)

If the linkage can be connected, both inequalities can be smplified as
(a+b-c-f)(a+c-b-f)>0
a+f <b+c (32

Further analysis can lead to that either link length aor f isthe minimum and 7 i, + { max <01+ 5.

Grashof's rule can then be proved. Besides, similar derivation is also applicable to the case 3 =0.

For spherica four-bar or f=0 , the coefficients in Equation (30) become

C, - C, =4a’sin? B(b2 + h2)> 0 and C;=Cg = 0. Hence, the criteriafor the existence of crank

areagain C;+Cg+C, >0 aswellas C;+C5-C420.

For h=0 and f =bsinf, the conic curve becomes a circle since B=D=G=0, C;=C, and

C5;=0.Theinput link isacrank if Equation (23) is satisfied.

Regarding the simply skewed four-bar g=h=0, the coefficients of conic curveare C3=C, =0
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and Cl—C2=4a2(f2—b25in2B). The criteria are just Grashof's rule when f >bsinp| or
C,-C,>0.If f<bsinpl, at least one of Equations (19) has to be satisfied and they become

— 2(a2b2 +a%c® +a%f 2 +b2%c? + b’ % +c%f 2)sin2 B

+(a4+b4+c4+f4)sin2[3+4a2b25in4[3+4c2f2 <0

f%(@®-b?-c® +1%)%-4a’(b*sin’p-1%)>20

-a* +(2b% +2f 2 + 2c% -8b%sin?B)a’ + 4b%f 2 - (f 2 +b%-c?)2 > 0 (33)
Besides, similar derivation can be applied to the case when h=cosp =0. The linkages that are
anayzed and have concise criteriafor type determination are aso listed in Table 2.

6. Linkage with prismatic output
If the output joint becomes prismatic, the general form of input-output equation is

(Ah2 1+ Bh+ C)oosg+ (Dh2 + En+ Fsing+ Gh? + Hh+1=0 (34)
Thefunction Ay, similarto A4, isderived as

Ay = (Bcos¢+Esing+H) —4(A cosp+ Dsing+ G )Ccosp+ Fsing+1)>0 (35)
The coefficients as in Equations (6) become

C,=B2-4AC C,-E’-4DF

C; = 2BE-4CD - 4AF C, = 2BH-4A1 - 4CG

Ce = 2EH — 4D] - 4FG Co = H> - 4GI (36)
Thefunction A,, related to the prismatic output is a quartic equation

Ap, = (Ah? +Bh+C)% +(Dh? + Eh+F)% —(Gh? + Hh+1)2>0 (37)

If an RSSP linkage shown in Figure 9 is to be analyzed, the input-output equation can be
modified from that of RSSR linkage. Parameters b and  are both zero. The point B, also origin

of frame Xy —Yyo -2, slides on a fixed link. The offset |P,B|=h becomes a variable. Some
related coefficients are thus

A=C=D=E=0 B =-2asinp

F = -24f G=1

ﬁz—chosB C_1:4a23in2[3

C;=C5=0 Cs = 8af

C, = 2BH — 4AI — 4CG = 4agsin 2B (38)

Although both terms C_2 and C_3 are zero, the quartic discriminants have to be applied to derive
the criteria for type determination. For the special case g=0, sin3 =0, or cosp =0, Equations
(14) are again the criteria for the input link since C3=C, =0 and C; >C,. Meanwhile, the
coefficients of both terms h and h® in Equation (37) are zero for g=0 or cosp=0, and the

limiting positions for the prismatic joint are easy to derive.
For the RSSP linkage with f =0, the conic equation becomes

ELX2+C_4X+C_620 (39)

This belongs to the special case C3=Cz=0. Replacing C, and C; by C, and C, are
necessary as proposed in Figure 5, and Equations (14)* become
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C_31+C_6+C?420 and C;+Cz—C,>0 (40)
Since C, >C,, Equations (19)* have to be considered as well. All these four specia RSSP
linkages and corresponding concise criteriaare also listed in Table 2.

7. Conclusion

For any bimodal linkages of which the input-output equation can be formulated as Equation (1)
or (34), the limiting positions are found by solving a conic curve and a unit circle as proposed in
Section 2. The mobility regions can then be figured out efficiently with considering the signs of the
first differentiation at limiting positions.

The concise criteria to determine the type for a selective group of bimodal linkages have been
derived and can be treated as the generalized Grashof's rule. The feature of this group is clearly
defined as one axis of the conic curve passing through the origin. Whether a considered linkage
belongs to this selective group can be judged easily from the coefficients of input-output equation.
In addition to the well-known planar and spherical four-bar linkages, at least nine linkages
belonging to this selective group areillustrated in this article. The corresponding type determination
criteriaare dl listed in Table 2.

The results in Section 2 and Section 3 can be integrated as proposed in Figure 5 to develop
computer software for designing bimodal linkages. For any concerned linkage, the input-output
eguation can be derived by following the techniques for RPSPR and RSSR linkages. Thereafter, the
program can numerically figure out the mobility regions. Most of al, the type determination criteria
can be derived symbolicaly and straightforwardly if one axis of the resultant conic curve passes
through the origin.
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Table 1 Propertiesof T; ~ T, and T5; at four regions

T T, T3
| + + +
1l - | -
11 + - -
v + + -
+: positive - hegative I imaginary number

Table 2: Some linkage with concise criteriafor type determination

Linkager  Dimension Criteria Remark

RPSC [sinf=0 Eq (14)
g=h=0 sinf =0 |Eq(14) planar four-bar
snp=0 Eq (14)

RSSR f=0 | Eq (14) sph.erl.cal fgur-bar
h=0 f=DbsnB |Eq(23) conicisacircle
g=h=0 Eq (14) & (19) |RSSR with zero offsets
h=cosp=0 Eq (14) & (19)
g=0 Eq (14)

RSSP 095[3 =0 Eq (14)
sn=0 Eq (14)
f=0 Eq (14)* & (19)*
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Unit

F Circle

A:=0

Unit
Circle
$=0° or X

7

(@. ~C5>0 and (C,+Cg)/(-C5)>1 (b)) —C5<0 and (C,+Cg)/(-C5)<-1

Figure 2 Two casesfor C; >C,

$=90° $=90°
orY ory Unit
/ A=0 7 Circle
@ - M% o
A>0 Unit =
/" Circle °
(8. —Cs>0and (C,+Cg)/(-C5)21 () —~C5<0 and (C,+Cq)/(-Cs5)<-1

Figure 3 Two casesfor C; <C,

N

Figure 4 Analysis of constraint functions T;, T,,and Tz
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bimodal linkage

1. without concise
criteria

o 2. determining type by
finding mobility regions
numerically

YES| * : swapping C1 with C2
CRANK and Ca with Cs

Figure 5 Flowchart for deriving type
determination criteria

Figure 8 Illlustration of RSSR linkage

Figure 9 Illustration of RSSP linkage
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