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ABSTRACT
Using the Timoshenko beam theory and applying

Hamilton’s principle, the present study establishes
bending vibrations of a spinning pretwisted beam
subjected to a harmonically time-dependent compressive
axial force. Equations of motion of the twisted beam are
derived in the spinning twist coordinate frame. The finite
element method is employed to discretize the equations
of motion into time-dependent ordinary differential
equations with gyroscopic terms. A set of second-order
ordinary differential equations with periodic coefficients
of Mathieu-Hill type is formed to investigate the effect of
twist angle, spinning speed, static component of axial
force, length-to-width ratio and restraint condition on the
parametric instability of the beam. It is believed that the
present model is valuable for the parametric studies to
understand better the various dynamic aspects of the
twisted beam affecting its dynamic stability behavior.

Keywords: pretwist, Timoshenko beam, gyroscopic,
parametric instability

1. INTRODUCTION
Vibration and stability analyses of the pre-twisted

structures, such as turbine blades, propeller blades and
drill bits, have received many researchers’attention in
different engineering fields for past decades. In general,
the dynamic behaviors of the pre-twisted structures have
been analyzed based on Euler beam theory or
Timoshenko beam theory. In addition to the geometric
aspects, the effects of the rotational speed and axial load
on the vibration and stability of twisted beams have also
been studied by several scientists and engineers. A
general review of the dynamic aspects of pre-twisted
beams can be found in review paper by Leissa [1] and
Rosen [2].

Based on Euler-Bernoulli beam theory, the effect of
the twist angle on the natural frequencies and mode
shapes of the cantilever turbine blade has been studied by
Carnegie [3], Dawson and Carnegie [4], and Sabuncu [5].
By treating the blade as a pre-twisted Timoshenko beam,
the vibration equations of motion of the pre-twisted blade
were developed using different techniques by Carnegie

[6], Dawson et al. [7], Gupta and Rao [8], Abbas [9],
Subrahmanyam et al. [10], Lin et al. [11], Banerjee [12],
and Yardimoglu and Yildirim [13] to study the effects of
geometric aspects, rotary inertia and shear deformation
on the lateral frequencies of the blade. Above studies
were concentrated mainly on the free vibration
characteristics of nonrotating pre-twisted beam
structures.

The dynamic behaviors of rotating beams about a
longitudinal or transverse axis have been investigated
extensively related to the vibration of shafts, turbine
blades and drill bits. A rotating twisted Timoshenko beam
which rotates about an axis normal to the longitudinal
axis of the beam was investigated by Fu [14], Rao and
Carnegie [15], Subrahmanyam and Kaza [16], Rao and
Gupta [17], and Sabuncu and Evran [18]. The lateral
vibration equations of motion of the axially spinning
pre-twisted beam have been established by Tekinalp and
Ulsoy [19,20], and Lee [21-23] to study the effects of the
spinning speed, the pre-twisted angle and aspect ratio of
the beam on the natural frequencies and dynamic stability
using the Euler-Bernoulli beam theory. The influences of
the spinning speed of a twisted Timoshenko beam
spinning about its longitudinal axis on the bending
frequencies and buckling loads were studied by Liao and
Dang [24], Chen and Keer [25] and Chen [26]. The
effects of twist angles and rotational speed on the
vibrational characteristics were investigated by the finite
element method.

The effect of the axial loading on the vibration
frequencies and stability of pre-twisted beams has been
treated by many scientists and engineers. Based on the
Euler-Bernoulli beam theory, the lateral vibration of a
spinning twisted beam under a constant axial load was
developed by Tekinalp and Ulsoy [19,20] to investigate
its influence on the natural frequencies of the drill bit.
The bending-bending vibration of a spinning twisted
Timoshenko beam subjected to a time-independent axial
load was also established by Liao and Dang [24], and
Chen and Keer [25] in the spinning twist frame to study
the effects of the axial force on the natural frequencies.
By directly employing the flexural vibration equations of
motion derived by Chen and Keer [25], Chen and Ho [27]
used the differential transform method to analyze the
natural frequencies and mode shapes of a spinning
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pre-twisted Timoshenko beam under constant axial
forces. Lateral vibrations of an axially loaded
non-uniform spinning twisted Timoshenko beam were
investigated recently by Ho and Chen [28] based on the
differential transform method. The dynamic stability of
spinning pre-twisted Euler-Bernoulli beams subjected to
time-varying axial loads has been studied by Liao and
Huang [29], Tan et. al. [30], and Young and Gau [31] to
investigated the effects of pretwist angle, spinning speed
and static component of axial load on the instability
regions. The static and dynamic stability of a rotating
pre-twisted Timoshenko beam subjected to an axial
periodic load was studied by Sabuncu and Evran [18]
using a finite element model.

The parametric instability of spinning pretwisted
beams subjected to time-dependent compressive axial
loads has been analyzed by many researchers based on
the Euler-Bernoulli beam theory, but the dynamic
stability of the spinning twisted Timoshenko beams
under time-varying compressive axial forces have not yet
been studied. Hence, in the present study, lateral bending
vibrations of a spinning pretwisted beam subjected to a
harmonically time-dependent compressive axial force
have been established by using the Timoshenko beam
theory and applying Hamilton’s principle. The equations
of motion of the twisted beam are derived in the spinning
twist coordinate frame. Then the finite element method
is utilized to discretize the equations of motion into
time-dependent ordinary differential equations with
gyroscopic terms. Based on the method by Bolotin [32],
a set of second-order ordinary differential equations with
periodic coefficients of Mathieu-Hill type is formulated
to find the boundaries of instability regions. The effects
of pretwist angle, spinning speed, static component of
axial force, length-to-width ratio and boundary conditiion
on the parametric instability of the spinning pretwisted
Timoshenko beam are investigated and discussed. It is
believed that the present model is valuable for the
parametric studies to understand better the various
dynamic aspects of the twisted beam affecting its
parametric stability behavior.

2. EQUATIONS OF LATERAL VIBRATION
The vibration equations of motion for a spinning

pretwisted Timoshenko beam subjected to the axial
pulsating load are derived based on Timoshenko beam
theory and applying Hamilton’s principle [33]. The
derivation of these equations is based on assumptions
that the shear center of the beam coincides with its mass
center; the plane cross-sections originally normal to the
neutral axis remain plane due to shear deflection; the
beam rotates at a constant spin speed o about its
longitudinal axis; and the twist angle per unit length o

(/L, = total twist angle) of the beam is constant.
To obtain the equations of motion of the rotating

pretwisted beam in moving twisted coordinates, three
coordinate frames are used as given in Fig. 1.
Coordinate system XYZ represents the inertial system;
coordinate system xyz rotates with a constant spin speed
about the Z-axis in the inertial frame; and the rotating
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Fig. 1 Beam configuration and coordinate systems.

twist coordinate z is fixed to the rotating beam and
moves along the beam pretwist angle such that axes 
and are in the principal directions of the beam
cross-section.

The transverse vibration equations of motion of the
Timoshenko beam in two orthogonal directions are
derived by applying Hamilton’s principle to the 
Lagrangian (L) of the beam system, which leads to

0)(
1

0

1

0

  dtWVTdtL
t

t

t

t

 (1)

Here T is the total kinetic energy of the beam vibrating in
combined bending-bending including the rotating inertia
effects; V is the potential energy of the beam due to the
shear and bending deformations; W is the work produced
by the time-dependent axial force. They are expressed in
the inertial coordinate system XYZ as follows. The prime
and the dot denote the differentiation with respect to the
spatial variable Z and time t, respectively.
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The relationship between the total transverse
displacements, uX and uY, and angles of rotation due to
bending, X and Y, in the inertial frame and the
associated quantities u, u, and in the rotating
twist coordinate system can be expressed as the
following transformation.
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where = t + oz. Similarly, the area moments and
product of inertia IXX, IYY and IXY can be expressed in
terms of the principal area moments of inertia Iand Ias
follows.
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and by changing the symbol “I” to “J”, Eq. (6) can also 
be applied to mass moments of inertia. By utilizing the
transformations (5)-(6) into Eqs. (1)- (4), the system
equations for a spinning pretwisted Timoshenko beam in
the rotating twist frame throughout the domain and the
associated boundary conditions could be obtained. The
governing equations of motion and boundary conditions
could be expressed in matrix form as follows.
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Here M , C and (t)K i
are coefficient matrices

relating to the system characteristics of the spinning
twisted beam structure; d = [u, u, , ]

T is the
displacement matrix of the twisted beam in the rotating
twisted frame; u, u,  and  are transverse
displacements and angles of rotation.

3. DYNAMIC STABILITY ANALYSIS
To investigate the dynamic stability of a spinning

twisted Timoshenko beam subjected to an axial pulsating
force, a finite element method is utilized to write the
governing equations in a discrete form of ordinary
differential equations with time as the independent
variable. The Mindlin-type linear beam element [34] with
eight degrees of freedom is used here. Each node of the
beam element has four degrees of freedom, two total
transverse displacements and two rotations due to
bending. Hence, the displacement function of the beam
element can be approximated by

)()(),( )()( tztz ee pNd  (9)
where

T)e( ],,u,u[  d
T)e( ],,uu,,,u,u[ 22221111  p





















21

21

21

21

000000
000000
000000
000000

NN
NN

NN
NN

N

Here shape functions N1 = 1 –z/Le and N2 = 1 –z/Le,
where Le is the length of the twisted beam element; u,
u, , and u, u, , are nodal displacements
of the twisted beam element at its nodal points.

By using Eq. (9) into the weak form of the equations
of motion, (7) and (8), and applying Galerkin‘s criterion, 
the resulting element equations are obtained as follows
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Here M(e) and C(e) denote the element inertia and Coriolis
gyroscopic matrices; )e()e( MK
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, )(e

BK and
)()( e

z
e

F F (t)FK  are the element stiffness matrices due
to spinning speed, the bending and shear effects, and
axial pulsating force, respectively. The skew-symmetric
property of the element Coriolis leads to the typical

coupling phenomenon of the behavior of the spinning
shaft system in the lateral plane. Special treatment must
be taken when deriving the element stiffness of a
Timoshenko beam because the numerical integration can
cause the shear locking when using elements of C0-order.
The selective reduced integration method proposed by
Hughes [35] is used here. The stiffness matrix due to
bending effect is computed using the normal quadrature
rule, while the stiffness matrix due to shear effect is
integrated with one-point quadrature scheme to avoid the
shear locking. Directly assembling these element
matrices and imposing the essential boundary conditions
obtain as the general form of the global system of
equations
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where the matrices M, C, K, KB and KF are the
corresponding global matrices. Eq. (11) is the standard
form of a gyroscopic type system of equations of motion.

The periodic compressive axial force is assumed to be
of the form

)cos(cos tPtFFF crpoz   (12)

where Fo is the static axial load; Fp and  are the
amplitude of the perturbed axial force and the disturbing
frequency; Pcr is the critical static buckling load of the
non-spinning untwisted beam; and are the respective
static and dynamic load factors. Introducing Eq. (12) into
Eq. (11) yields
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which represents a second-order ordinary differential
equation with periodic coefficients of Mathieu-Hill type.
Based on the method presented in Bolotin [32], the
boundaries between stable and unstable solutions of Eq.
(13) are separated by periodic solutions of periods T and
2T, where T = 2/. The instability zones bounded by
solutions with period 2T are of greater practical
importance. As the first-order approximation, the
periodic solutions of p with period 2T can be sought in
the one-term Fourier series as

2
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where a and b are arbitrary time-invariant vectors. By
substituting the one-term series solution into equation (13)
and separating the sine and cosine parts, a set of
homogenous linear algebraic equations in terms of a and
b can be obtained in matrix form as follows.
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Eq. (15) can be rewritten in the form of quadratic
eigenvalue problem (QEP)
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In order to determine the eigenvalues of the quadratic

eigenvalue problem Eq. (16), a standard linearization
approach is used and a 2n x 2n general eigenvalue
problem is solved. Since Eq. (16) is of a real gyroscopic
system, a Hamiltonian/ skew-Hamiltonian linearization
[36] is used to form the 2n x 2n general eigenvalue
problem as
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The condition for non-trivial solutions of Eq. (21) is
0)det(  BA  (25)

Here, the eigenvalues of the above equation are just
the disturbing frequencies  for the boundaries of the
regimes of instability. In the next, the LAPACK [37]
generalized nonsymmetric eigenvalue routines are used
to solve the eigenvalue problem.

4. RESULTS AND DISCUSSIONS
The first four parametric instability regions are plotted

for an axially loaded pretwisted Timoshenko beam to
consider the effects of pretwist angle, spinning speed,
static load factor, aspect ratio and boundary conditions. A
clamped-free non-spinning untwisted beam with
geometric and material properties of L = 0.2 m, b = 0.02
m, R = I/I= 0.4, = 5/6, E = 207 Gpa, = 0.3, =
7860 kg/m3 is described as a standard case and the
evaluated fundamental natural frequency cr and
buckling load Pcr of this beam is taken as the reference
speed and load. The non-dimensional spinning speed

cr/  and boundary frequency ratio
cr/  is

used throughout the dynamic instability studies.
The effect of the pretwist angle o on the instability

regions for a spinning clamped-free pretwisted
Timoshenko beam with 40. and = 0.5 is shown
in Fig. 2. It can be found that the first two instability
regions move close to each other as the pretwist angle is
increased. The next two instability regions also move
close to each other as the pretwist angle is increased up
to o = 9 cm-1, but they move away from each other when

o = 13.5 cm-1and they both shift to the left when o = 18
cm-1. It can also be observed that only the first instability
region become more and more narrow with the
increasing pretwist angle, but the other three instability
regions vary differently when the pretwist angle is
increased.

Fig. 3 shows the effect of the spinning speed  on
the instability regions for a spinning clamped-free
pretwisted Timoshenko beam with o = 4.5 cm-1 and =
0.5. When the spinning speed increases, the first two
instability regions move away from each other. The next
two instability regions also have the same tendency. As
can be seen in Fig.3, the first instability region becomes
larger and its lower bound is to be shifted to the left and
intersects the ordinate axis at a lower dynamic load factor
when the spinning speed is increased and near the critical
speed. However, the second instability region becomes
smaller with the increasing spinning speed. The other
instability regions are affected insignificantly by the
spinning speed.

The effect of static component of load for = 0, 0.2,
0.4, 0.6, 0.8 and 1.0 on the instability regions for a
spinning clamped-free pretwisted Timoshenko beam with
o = 4.5 cm-1 and  = 0.2 is shown in Fig. 4. Due to the
increase of static component of the axial load, the
instability regions tend to shift to lower frequencies and
become wider. It can be seen that the first instability
region is significantly affected by the increasing static
load factor, but the other instability regions are influence
subtly.

Fig. 5 shows the effect of the length-to-width ratio on
instability regions for a spinning clamped-free pretwisted
Timoshenko beam with o = 4.5 cm-1,  = 0.4 and =
0.5. It is observed that the onset of dynamic instability
occurs much later with the decreasing of the
length-to-width ratio. As the length-to-width ratio
decreases, the width of the first and fourth instability
region is decreased, but that of the second and third
instability region is increased. However, only the first
two instability regions are affected significantly by the
length-to-width ratio.

Fig. 6 shows the influence of different restrained
conditions (clamped- free, clamped- pinned, clamped-
clamped) on the instability regions for a spinning
pretwisted Timoshenko beam with o = 4.5 cm-1,  =
0.4 and = 0.5. As expected, the dynamic instability
occurs at a higher disturbance frequency from the free to
clamped end. The width of the instability regions are also
decreased with the increasing restraint.

5. CONCLUSION
The present Timoshenko beam model can be used to

analyze the parametric instability characteristics of a
spinning axially-loaded pre-twisted beam structures.
The finite element results demonstrate the influence of
the twist angle, spinning speed, static load component,
length-to-width ratio and restraints on the instability
regions. Based on the results discussed earlier, several
conclusions can be summarized as follows.
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(1) The first instability region becomes smaller, but the
next three instability regions change differently as the
pretwist angle is increased.
(2) The width of the first instability region becomes
wider, but that of the second instability region becomes
narrower when the spinning speed increases. The onset
of first instability region occurs at a lower disturbance
frequency, but that of second instability region occurs at
a higher disturbance frequency with the increasing speed.
(3) The instability regions are to be shifted to lower
frequencies with wide instability regions when the static
load component is increased, which shows a
destabilizing effect on the dynamic stability behavior of
the twisted beam.
(4) The onset of dynamic instability occurs much later
when the length-to-width ratio is decreased. The width of
the first instability region is decreased, but that of the
second is increased with the decreasing length-to-width
ratio.
(5) The instability regions have been influenced due to
constraints provided at the ends
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Fig. 2 Effect of pretwist angle o on instability regions
of a spinning clamped-free pretwisted Timoshenko
beam with R = 0.4, 40. and = 0.5; (a) o = 0, (b)
o = 4.5, (c) o = 9.0, (d) o = 13.5, (e) o = 18.
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Fig. 3 Effect of spinning speed  on instability
regions of a spinning clamped-free pretwisted
Timoshenko beam with R = 0.4, o = 4.5 cm-1 and =
0.5; (a)  = 0.1, (b)  = 0.2, (c)  = 0.3, (d) 
= 0.4, (e)  = 0.5, (f)  = 0.6.
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Fig. 4 Effect of static load factor on instability
regions of a spinning clamped-free pretwisted
Timoshenko beam with R = 0.4, o = 4.5 cm-1 and 
= 0.2; (a) = 0., (b) = 0.2, (c) = 0.4, (d) = 0.6, (e)
=0.8, (f) = 1.0.
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Fig. 5 Effect of length-to-width ratio L/b on instability
regions of a spinning clamped-free pretwisted
Timoshenko beam with R = 0.4, o = 4.5 cm-1,  =
0.4 and = 0.5; (a) L/b = 10, (b) L/b = 9, (c) L/b = 7,
(d) L/b = 5.
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Fig. 6 Effects of restrained conditions on instability
regions of a spinning pretwisted Timoshenko beam
with R = 0.4, o = 4.5 cm-1,  = 0.4 and = 0.5; (a)
clamped- free, (b) clamped- pinned, (c) clamped-
clamped.

自旋預扭提摩新格樑受周期性變動軸
向壓力作用下之參數不穩定分析

陳為仁

中國文化大學機械工程學系

摘要

本計畫使用提摩新格樑理論及漢彌爾敦原理，以
建立受到一週期性軸向壓力之自旋預扭樑的撓曲振動
方程式。並在轉動扭轉座標系下推導該樑之運動方程

式，再使用有限元素法將運動方程式離散成以時間為
自變數之陀螺儀型態常微分方程式，以進行動態分
析。文中考慮受到週期性變動軸向壓力作用下自旋預
扭提摩新格樑的參數不穩定性， Mathieu-Hill 型態之
具週期參數的線性二階常微分運動方程式將被形成以
探討樑之預扭角、轉速、穩態軸向力、幾何參數比及
邊界條件對該系統的不穩定區域的影響。咸信本計畫
的分析將有助於更加了解預扭樑的各種參數對其動態
穩定行為的影響效應。
關鍵詞：預扭樑、提摩新格樑、陀螺儀、參數不穩定
性。


