Give a circuit shown as follow, where v_o is the output voltage and v₁ and v₂ are input voltage. [20]

Please answer the following questions:

- a What is the input resistance seen by v₁ alone? (by setting to v₂ to zero)
- b What is the input resistance seen by v₂ alone? (by setting to v₁ to zero)
- c Give the output voltage v₀ with respect to the resistors R₁, R₂, R₃, R₄ and input v₁ and v₂.
- d

 If the output is proportional to the voltage difference (v₁ v₂), then this circuit is called as OP difference amplifier. Please give the relationships between R₁, R₂, R₃ and R₄ which can make this circuit.
- Give a circuit, shown as follow, composed of two sections in cascade: a clamp formed by C₁ and D₁, and a peak rectifier formed by D₂ and C₂. When the circuit is excited by a sinusoid of amplitude V_p, the clamping section provides the voltage waveform of output v_o. Please the output voltage v₀ and draw it. Note that this circuit is commonly called by voltage doubler. [15]

 Give a basic MOS differential-pair circuit, shown as follow. It consists two matched transistors Q₁ and Q₂, whose sources and joined together and biased by a constant-current source I. Please derive the voltage of v_{D1} and v_{D2}. [15]

4. Give a "Notch" filter, shown as follow. The natural frequency is $w_0 = \sqrt{LC}$. [15]

a > Please show the transfer function.

$$G(s) = \frac{V_o(s)}{V_i(s)} = \frac{a(s^2 + w_o^2)}{s^2 + s(w_o/Q) + w_o^2}$$

- b > Please give the value of a.
- $c \sim$ Please show the value of Q.

5. Give three pull-down CMOS gates circuits, please try to analyze these circuits and give their Boolean expression with respect to inputs and output. [15]

- 6. The α is called as common-base current gain. And the β as common-emitter current gain. Please answer the following questions: [20]
 - $a \sim$ The relationship between i_E , i_C and i_B .
 - b The relationship between i_E and i_C with respect to α .
 - $c \sim$ The relationship between i_E and i_C with respect to β .
 - d \checkmark The relationship between α and β .

