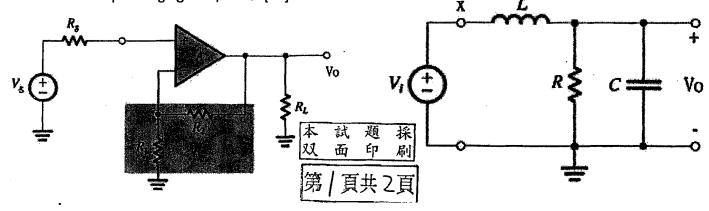
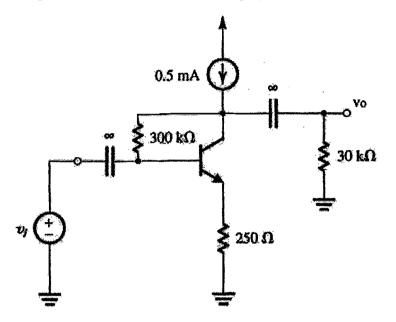
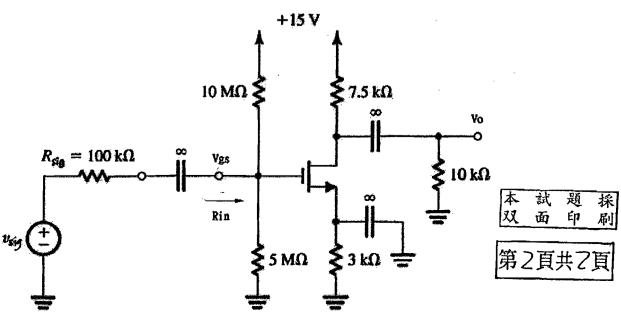

中國文化大學 99 學年度碩士班考試入學招生考試 系所組:機械工程學系數位機電碩士班丙組 日期節次:99年3月13日第2節11:00-12:30 科目::電子學


1. Give a Bridge Rectifier, shown at the left part of the following figure. A sinusoidal input voltage source, v_{ac} , is an AC voltage source with its peak equal to V_p . The waveform of v_{ac} is drawn at the right part of the given figure. It has assumed that all diodes are ideal diodes. Please plot the waveform of output voltage, V_o , with respect to input voltage source. [15]

2. Give three CMOS circuits, shown as follows. Please write down the digital operations of output Y. [15]


- 3. A non-negative OP-AMP circuit with an implementation of a feedback loop is shown on the following figure. It has assumed that the OP-AMP has infinite input and zero output resistance. Please answer these questions: (a) Find out the expression of the feedback factor, β . (b) If the open-loop voltage gain of this OP-AMP is 10⁴ (A=10⁴), find out R₂/R₁ to obtain a closed-loop voltage gain A_f of 10. [15]
- 4. Give a RLC circuit, shown as follow figure. [15]
 - (a) Please derive the transfer function, T(s), where s=jw.
 - (b) Please determine what type filter operation it is.
 - (c) Give a brief explanation of the previous question and find out the natural frequency (w₀) and quality factor (Q).


中國文化大學 99 學年度碩士班考試入學招生考試 系所組:機械工程學系數位機電碩士班丙組 日期節次:99年3月13日第2節11:00-12:30 科目::電子學

- 5. A circuit containing a BJT is shown on the following figure, which the β is equal to 100. [20]
 - (a) Find the dc collector current and dc voltage at the collector.
 - (b) Replacing the transistor by its T model, draw the small signal equivalent circuit of the amplifier. Analyze the resulting circuit to determine the voltage gain v_0/v_i .

2頁(共2頁)

- 6. A discrete CS amplifier circuit is employing the classical biasing scheme. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very capacitor (shown as infinite). [20]
 - (a) If the transistor has $V_t=1V$, and $k_n W/L=2mA/V^2$, verify that the bias circuit establishes $V_{GS} = 2V$, $I_D=1$ mA, and $V_D=+7.5$ V. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
 - (b) Find g_m and r_o if $V_A = 100$ V.
 - (c) Draw a complete small-signal equivalent circuit for the amplifier assuming all capacitors behave as short circuits at signal frequencies.
 - (d) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig} .

