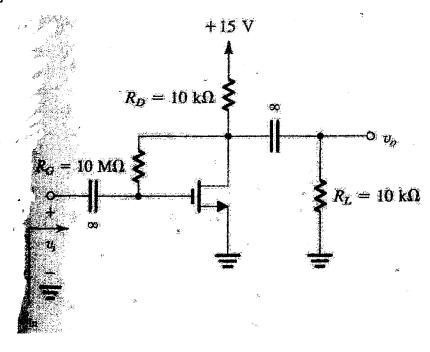

中國文化大學 100 學年度碩士班考試入學招生考試

系所組:機械工程學系數位機電碩士班丙組

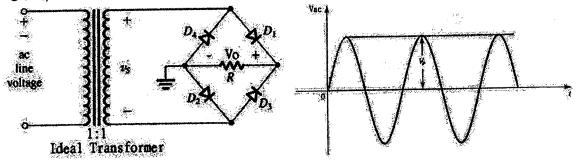

日期節次:100年3月20日第2節11:00-12:30

科目:電子學

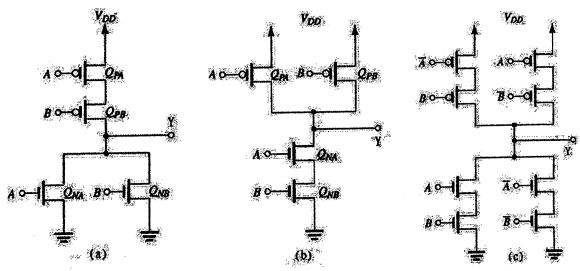
1. Analyze the circuit shown in the following figure to determine the voltages at all nodes and the currents through all branches. Let $V_t = 1 \text{ V}$, $k_n'(W/L) = 0.25 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e. assume $\lambda = 0$). [20]

2. The following figure shows a discrete common-source MOSFET amplifier utilizing the drain-to-gate feedback biasing arrangement. The input signal v_i is coupled to the gate via a large capacitor, and the output signal at the drain is coupled to the load resistance R_L via another large capacitor. We wish to analyze this amplifier circuit to determine its small-signal voltage gain, its input resistance, and the largest allowable input signal. The transistor has $V_t = 1.5 \text{ V}$, $k_n'(W/L) = 0.25 \text{ mA/V}^2$, and $V_A = 50 \text{ V}$. Assume the coupling capacitor to be sufficiently large so as to act as short circuits at the signal frequencies of interest. [20]

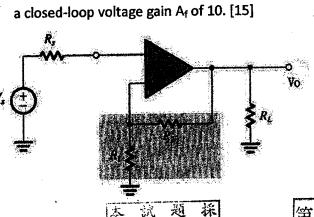
本試題採双面印刷


第(頁共 2頁

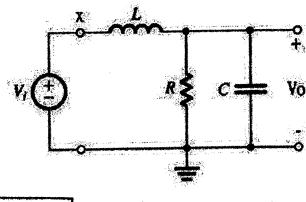
系所組:機械工程學系數位機電碩士班**丙組**


日期節次:100年3月20日第2節11:00-12:30

科目:電子學


3. Give a Bridge Rectifier, shown at the left part of the following tigure. A sinusoidal input voltage source, v_{ac} , is an AC voltage source with its peak equal to V_p . The waveform of v_{ac} is drawn at the right part of the given figure. It has assumed that all diodes are ideal diodes. Please plot the waveform of output voltage, V_o , with respect to input voltage source. [15]

4. Give three CMOS circuits, shown as follows. Please write down the digital operations of output Y. [15]


5. A non-negative OP-AMP circuit with an implementation of a feedback loop is shown on the following figure. It has assumed that the OP-AMP has infinite input and zero output resistance. Please answer these questions: (a) Find out the expression of the feedback factor, β. (b) If the open-loop voltage gain of this OP-AMP is 10⁴ (A=10⁴), find out R₂/R₁ to obtain a closed-loop voltage gain A_f of 10. [15]

双

函

- 6. Give a RLC circuit, shown as follow figure. [15]
 - (a) Please derive the transfer function, T(s), where s=jw.
 - (b) Please determine what type filter operation it is.
 - (c) Give a brief explanation of the previous question and find out the natural frequency (w₀) and quality factor (Q).

第2頁共2頁