摘要: | 隨著半導體產業蓬勃發展,陶瓷材料也大量應用在半導體產業和電子產業上。當積體電路和電子元件微小化,對封裝的要求越來越高,封裝材料的性質直接影響了積體電路的表現,因此微電子封裝技術在半導體技術中成為重要的因素之ㄧ。 氮化鋁有著高熱傳導係數、低介電常數和低熱膨脹係數等特性,可作為微電子封裝材料之應用。近年來的研究顯示氮化鋁陶瓷的合成燒結溫度多在1600oC以上,本研究使用低溫燒結方式製作氮化鋁奈米陶瓷,藉由改變燒結溫度、粒徑大小以及添加燒結助劑的參數調整下,探討對氮化鋁熱傳導係數的影響。
實驗過程中使用掃描式電子顯微鏡(SEM)、X光繞射儀(XRD)、顯微拉曼光譜儀(Micro Raman)檢測樣品,經分析測量出的結果圖,依據樣品的表面形貌和微結構分析,其結果顯示氮化鋁的燒結樣品中皆無Al2O3及二次相產生。
本研究結果顯示氮化鋁奈米陶瓷,在改變燒結溫度從1380oC提升至1480oC的條件下,熱導係數約提升17% 。當氮化鋁粒徑為100 nm比對粒徑為500 nm時,熱導係數有顯著提高約87%,相對於比對粒徑為200 nm,則熱導係數變化並不顯著。添加燒結助劑Y2O3之濃度比率由0 wt%提升為5 wt%,在AlN粒徑為500 nm時,熱導係數可提升約17%,但是當粒徑為100 nm和200 nm時,熱導係數則略微降低。
研究結果發現使用低溫燒結方式製備AlN奈米陶瓷,在粒徑為500 nm、燒結溫度為1480oC、添加燒結助劑Y2O3比率為5 wt%時,可得最佳的熱導係數值11.32 W/mk。
With the vigorous development of the semiconductor industry, ceramic materials are widely used in the semiconductor industry and the electronics industry. Integrated circuit and electronic components, the requirements for packaging are getting higher and higher, the nature of the packaging material directly affects the performance of the integrated circuit, microelectronic packaging technology is one of the important factors in semiconductor technology. AlN has a high thermal conductivity, low dielectric constant and low thermal expansion coefficient can be used in electronic packaging materials. Recent studies have shown that the synthetic sintering temperature of aluminum nitride ceramics is more than 1600oC, this research uses low-temperature sintering to produce AlN nanoceramic materials, By changing the sintering temperature, particle size and parameter adjustment of adding sintering aids, the effect of thermal conductivity is discussed.
During the experiment, a scanning electron microscope (SEM), X-ray diffraction (XRD), and Raman spectrometer (Micro Raman) were used to detect the sample. The result of the analysis and measurement is based on the surface morphology and microstructure analysis of the sample. The results show that there is no Al2O3 and secondary phases in the sintered aluminum nitride samples.
The results of this study show that AlN nanoceramics, changing the sintering temperature from 1380oC to 1480oC increases the thermal conductivity by about 17%. When the aluminum nitride particle size is 100 nm and the comparison particle size is 500 nm, the thermal conductivity is significantly improved by about 87%. Relative to the particle size of 200 nm, the thermal conductivity change is not significant. The concentration effect of Y2O3 sintering aid when the AlN particle size is 500 nm, the thermal conductivity is increased by about 17% by concentration ratio from 0 wt% to 5 wt%, however, when the particle size is 100 nm and 200 nm, the thermal conductivity is slightly reduced.
The results of this study suggest that sintering temperature at 1480oC with Y2O3 sintering aid concentration of 5 wt%, and in AlN particle size of 500 nm, the highest thermal conductivity value of 11.32 W/mk can be obtained |